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Abstract. This review describes development of non-hydrostatic numerical models of
the atmosphere for both operational and research purposes. Three major components of
non-hydrostatic models are discussed. These include: governing equations in Section 1,
numerical techniques to solve them in Section 2, and the third section describes inclusion
of nonlinear physical processes. In Section 1, we describe the various approximations to
the governing equations that are being used in nonhydrostatic models. The Boussinesq,
anelastic, and fully compressible treatments are compared. Various vertical coordinate
systems are also discussed. In Section 2, for the fully compressible non-hydrostatic equa-
tions, we review various techniques to handle acoustic and fast moving gravity modes,
including semi-implicit and split-explicit time integration schemes to control the acoustic
modes. Methods of defining vertical and lateral boundary conditions are also discussed.
In Section 3, we review the inclusion of physical processes in various models and discuss
data initialization procedures. In the last section, we summarize current status of the
development of non-hydrostatic models with a brief comment on future research in this
area.
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1. Introduction

Meso 3 and -y scale motions with characteristic length scales between 10 to 100
km in the atmosphere, such as mountain waves, thunderstorms, squall lines and
convective motions, deviate from hydrostatic balance and therefore require the full
three-dimensional equations of motion for their description. The full set of equa-
tions of motion are too complex to solve analytically, and approximate solutions
are usually obtained numerically. Fully compressible Navier-Stokes equations not
only allow gravity modes and meteorologically significant rotational modes but
also allow acoustic modes which propagate at phase speeds about 300 m/s in both
horizontal and vertical directions. These acoustic modes contain very little energy
and meteorologically unimportant. However, their presence place a very severe
limitation on the time steps that can be used for numerical integration of the
model. For example, the maximum time steps one can use in the model must sat-
isfy the Courant-Friedrichs-Lewy (CFL) condition, At < As/C;, As is the spatial
increment, C, is the phase speed of the fastest moving acoustic wave, At is the
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maximum time increment one can use. If the vertical spatial increment is 30 m, a
common value used in the planetary boundary modeling, a 0.1 second time step
is needed. Early efforts in the development of non-hydrostatic models are concen-
trated in eliminating these acoustic modes by making some approximations to the
governing equations. Most noteworthy of these efforts is by Ogura and Phillips [35]
who proposed the so-called anelastic (sound-proof) approximations, which elimi-
nate the acoustic waves completely from the model, yet the model is still able to
describe the non-hydrostatic process. There are some modifications of the original
anelastic approximations (e.g. Dutton and Fichtl [11]; Gough [16]; Wilhelmson and
Ogura [45]; Lipps and Hemler [28]; Durran [9]; Lipps [27]). The anelastic approx-
imations are widely used in many non-hydrostatic models for research purposes
{e.g. Clark [3]; Lipps and Hemler [29]; Kapitza [21]; Hemler et al. [18]; Kogan [26]).
Since the middle 70's, most of the non-hydrostatic models developed are based on
the fully compressible Navier-Stokes equations (e.g. Hill [19]; Tapp and White [43];
Klemp and Wilhelmson [24]; Cotton and Tripoli [4]). With the availability of high
speed computers and efficient new numerical schemes, such as semi-implicit and
split-explicit time integration techniques, one can run a fully compressible non-
hydrostatic model as efficiently as it would be for a hydrostatic models. Several
recent studies have demonstrated the feasibility of performing large scale flow sim-
ulations with non-hydrostatic models {e.g. Golding [15]; Cullen [5}; Tanguay et al.
42]).

In the following chapters three major components of non-hydrostatic model
are discussed. Fully compressible Navier-Stokes equations in various vertical co-
ordinate systems that are currently being used in various non-hydrostatic models
are described in Section 2.1. Section 3.1 briefly describes various approximations
that are made in the governing equations to eliminate acoustic modes. Section 3.2
describes a few time integration techniques that can be used to overcome the time
step limitations imposed by the presence of acoustic modes in fully compressible set
of equations. Inclusion of physical processes and data initialization techniques as
well as the four-dimensional data assimilation that are suitable for non-hydrostatic
models are also briefly discussed. There is an excellent paper written by Skamarock
[41] on this subject.

2. Governing equations

2.1. Fully compressible non-hydrostatic equations

The governing equations for the atmospheric motions are the fully compressible
Navier-Stokes equations, which are sufficiently general to be applicable to general
circulation and synoptic scale motions as well as a wide range of mesoscale phenom-
ena. We can write the fully compressible Navier-Stokes equations in a coordinate
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system with Z as the vertical coordinate as,
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Equation (2.1} to (2.4) are momentum, continuity, thermodynamic and equa-~
tion of state, respectively. The total derivative, D/Dt, is defined as,
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The dependent variable V, p, T, p in equations (2.1) to (2.4) represent velocity,

density, temperature and pressure, respectively. F is the frictional force, () is the
diabatic heat source. Most of the non-hydrostatic models use variations of these
equations above for the computational convenience and meteorological phenomena
of interest. It is very common to replace temperature with potential temperature,
#, and pressure with Exner function, IT, which are defined as,
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The main advantage of replacing the temperature and pressure with the poten-
tial temperature and the Exner function is that the density, a non-observational
variable, is not explicitly appear in the governing equations. This replacement is
only for the computational convenience (e.g., Tapp and White [43]; Cotton and
Tripoli [4]; Klemp and Wilhelmson [24]). Recently, Tanguay et al. [42] used an-
other nondimensional pressure variable ¢ = In(p/pg) in their model. Using the new
variable g, they were able to eliminate the density, such that the pressure gradient
terms becomes RT 7 g. With these modifications, the governing equation (2.1) to
(2.4) can be written as (Tapp and White [43]),
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%:i +V -6 = Q8/(c,T) (2.7)

where V = (u, v, w) is the velocity vector in three dimensions and kk is the unit
vector in the z-direction. The terms F = (Fz, F'y, F'z) describe the sources and
sinks of the momentum in z,y, and z directions, respectively. The term () rep-
resents the source and sink of heat. As suggested by Tapp and White [43], the
governing equations above exclude some effects of the sarth’s rotation, the most
important of which is probably the vertical component of the Coriolis force which
may be large enough to contribute to non-hydrostatic effects in regions of strong
zonal flow.

2.2, The vertical coordinate systems

Two types of vertical coordinate systems have been used in the non-hydrostatic
models in the past. The first group is the geometric height and geometric height-
based terrain following coordinates. The second group is the pressure and pressure-
based terrain following coordinate. We discuss them in the following section.

The natural choice for the vertical coordinate would be the geometric height
coordinate or the z-coordinate, if the ground surface is flat (e.g. 43]; Tanguay et
al. [42]). When the topography is present in the model, a geometric height based
terrain-following coordinate transformation is commeoenly used to deal with the
difficulties at lower boundary that arise from using the conventional z-coordinate.
Galchen and Somerville [14] proposed the following coordinate transformation

ZF=H(z—z)/(H — z4)

where z,(x,y) is the topographic height and H is the domain height. This coordi-
nate transformation has been adopted in many non-hydrostatic as well as hydro-
static mesoscale models (e.g. Clark [3]). The height above the ground surface was
also used as the vertical coordinate (Carpenter (2]).

Since most of the observations are made on pressure surfaces, however, it is
convenient to use pressure as vertical coordinate. Using a rigorous scale analysis,
Miller {32] and Miller and Pearce [33] have developed non-hydrostatic models with
pressure as the vertical coordinate. Recently, several non-hydrostatic models are
developed with a nondimensional vertical coordinate based on surface pressure
(e.g. Xue and Thorpe [46]). The reader is referred to recent papers by Miller and
White [31], and White [44] for more information about how to use pressure based
terrain following coordinates in a non-hydrostatic model.

3. Numerical methods

The fully compressible non-hydrostatic governing equations discussed in the pre-
vious section allow the existence of full spectrum of wave motions, including the
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high frequency acoustic waves. Since acoustic waves contain very small amounts of
energy, they are not meteorologically important. Because of their high frequency,
however, acoustic waves restrict the time increment to a fraction of one can use
if they are eliminated. Usually there are two methods to deal with the acoustic
modes. One can increase computational efficiency of non-hydrostatic models either
eliminating the acoustic modes from the model atmosphere by modifying the gov-
erning equations or computing the terms governing acoustic waves either implicitly
or by using time-split techniques.

3.1. Physical approximations

There are two physical approximations that are commonly used in numerical mod-
els to eliminate the acoustic waves from the model atmosphere. One is hydrostatic
assumption where the vertical accelerations are very small compared to other terms
in the momentum equation for vertical component of the velocity. With this ap-
proximation, the equation of motion for vertical component of velocity reduces to
hydrostatic relation. Another is anelastic approximations proposed by Ogura and
Phillips [35].

3.1.1. Hydrostatic assumption. The hydrostatic assumption states that the
acceleration of vertical velocity is small compared to other terms in the equation
of the vertical component of the velocity therefore, this equation reduces to

Bp__
8

According to scale analysis, the hydrostatic approximation is valid when the
aspect ratio (vertical scale of the motions/horizontal scale of the motions) is much
less than unity. Vertically propagating acoustic waves are eliminated under hydro-
static assumption. For meso-a, synoptic and global scale circulations hydrostatic
approximation is valid. The finest model resolution used at major weather fore-
casting centers, is about 40 km in horizontal. The use of hydrostatic approxima-
tion can be justified at these model resolutions. However, with the rapid increase
in computer power, the model resolution has been steadily increasing. Eventu-
ally, it will be necessary to relax the hydrostatic assumption and consider using
non-hydrostatic models in the near future. Recently, Daley [8] suggested that non-
hydrostatic processes have to be included in global models in the near future with
the steady increase of model resolution. One way to include non-hydrostatic pro-
cesses while eliminating the acoustic modes is to use anelastic approximations to
the governing equations,

3.1.2. Anelastic (sound-proof) approximations. To study the behavior of
convective phenomena in the atmosphere, Ogura and Philips [35] proposed the
anelastic approximation and proved its validity through a rigorous scale analysis.
The following discussion is based on the work of Ogura and Philips [35]. They
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separated the atmospheric variables into two parts, the base state and the pertur-
bations from it. Two basic assumptions have been made in their study.

(1) The base state potential temperature is chosen as a constant; the potential
temperature departure from the base state is small.

(2) The time scale of the motion is chosen to be the inverse of the well known
Brunt-Vaisala frequency, N, which separates the gravity waves and acoustic
waves in a resting isothermal atmosphere.

The first assumption implied that the variation of density from the horizontal
mean is sufficiently small and can be ignored except for the density variations are
multiplied by the term g (buoyancy term). Under the anelastic assumptions, the
continuity equation can be written as

dup(z)  Ovplz)  dwp(z)
et oyt o =0 (3.1)

where p, the density of the base atmosphere is a function of Z only. A special case
of the anelastic approximations is the incompressible Boussinesg approximations,
in which the variability of density is assumed to be small and can be ignored ev-
erywhere except in the buoyancy term in the vertical momentum equation. Under
incompressible Boussinesq assumption the continuity equation can be written as

du dw Huw
—_— 3 — 4+ — =10. 3.2
dr By Oz (3:2)
The incompressible Boussinesq approximation is commonly used in modeling
shallow convections in the atmosphere. Since the anelastic approximation elimi-
nates the prognostic nature of the continuity equation, one must then solve an
elliptic equation derived from momentum equation and continuity equation.

The anelastic system proposed by Ogura and Philips contains the following
equations in addition to equation (3.1). They are

av
FE =Vm 3.3)
d’fﬂg _ _6‘71'1
ﬁ“&t— =T + (64 (3.4)
afr
prile 0 (3.5)

where all the variables are nondimensional, the base state variables have a subscript
“(”, and perturbations of the variables from the base state have a subscript “1”,
One important note concerning the anelastic system is that the variables vg, wo, 7y,
and ¢, are not completely independent. The nondimensional pressure 7; must
always be such that the forcing terms in momentum equations continue to satisfy
the continuity equation. These constraints implied that m; must be determined by
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the solution of an elliptic equation:

o 371’1 _ Bngl 3V0
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Equations (3.3) to (3.6) do not allow acoustic waves as solutions. For modeling
the deep dry convection, where mixing will keep the environmental lapse rate close
to adiabatic, the anelastic assumption can be used with complete confidence. It
will be adequate to use the incompressible Boussinesq approximation for modeling
the shallow convections. if the purpose of the study is for deep moist convections,
however, the departure of the potential temperature from the isentropic base state
can be rather large ([9]). Several modifications to the anelastic approximations have
been revised (e.g. Wilhelmson and Ogura [45]; Lipps and Hemler [28]; Durran [9];
Lipps [27]). Lipps and Hemler [28] suggested that the moist deep convections can
be handled if the base state potential temperature is a slow varying function of
height.

Durran [9] has suggested that the acoustic waves can be filtered from the model
atmosphere with minimal changes to the governing equations by replacing the fully
compressible continuity equation with the “pseudo-incompressible equation”

~ H
ABIV) = ——
v - {(A0V) o
where 7(z) and #(z) are the vertically varying base state density and potential

temperature, [1(z) = (5(2)/po)™ ©» is the base state Exner function, and H is the
rate of heating per unit volume.

3.2. Numerical techniques

As discussed above, the fully compressible system admits the high frequency acous-
tic waves as solutions. The presence of the modes in the system will place severe
limit on the time step for numerical integration. However, one can reduce com-
puter time requirements by using either semi-implicit (e.g. Tapp and White [43])
or split-explicit (e.g. Klemp and Wilhelmson [24]; Gadd [13]) techniques. These
integration techniques are described briefly in the following section.

3.2.1. Semi-implicit technigue. Semi-implicit scheme was developed in the late
60’s [38], to allow larger time steps than it would be possible using a conventional
explicit time integration in a primitive equation model. Longer time steps are
achieved by a substantial slowing of fast moving gravity waves. In the middle of
the 70’s, Tapp and White [43] adopted a semi-implicit scheme, similar to that
described by Kwizak and Robert [22], for their fully compressible non-hydrostatic
model. The idea behind this technique is to treat the dominant terms that govern



3602 L. Xu, 5. Raman, and R.V. Madala

the acoustic modes in the equation of motion implicitly. To illustrate how the
semi-implicit technique used in practice, we briefly summarize the procedures that
Tapp and White [43] used in their model.

They separated the Exner function /2 and potential temperature # into a stable
base state Py and a constant 8y and deviations P; and @, as follows

P= PD(Z) + Pl(may’zat)

8 =28 +91(I,y,z,t)

where, Py =1—2/H and H = Cp,8y/9 is a scale height for the basic atmosphere.
Using these variables, equations (2.5)—(2.8) can be written as,

HP P
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where all the dominant terms that govern acoustic modes appear on the left-hand
side and all the other terms on the right-hand sides. Here Cy(z) = /YROE, is
the phase speed of the acoustic waves in the base state atmosphere.

In finite difference form, all the terms on the left-hand side are treated implicitly
as an average between time levels n+1 and n—1. For example the pressure gradient
term (8 57 Py is represented by CL8y v 2(P"”""l + P 1 and the acoustlcally
active terms —gw+ C? V-V in continuity equation are replaced with —g3 Lawmtl +

w™ 1)+ CF 7 -4(V" + V1), The terms on the right-hand side are evaluated
either at time level n or n— 1 depending on the stability requirements. After some
algebra, the finite difference form of the equations (3.7) to (3.11) can be written
3'51

W =t X - T
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o =ty 50T
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wrtl =y 142~ 6t—
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The terms X,Y,Z,® and © are 26t times the right-hand side of the equa-
tions (3.7) to (3.11). Fliminating w™*!, o™t and w™"', they obtained a three-
dimensional elliptic equation:

o
2 - =
Vet g cree ™= F (3.12)

where 7%, is the horizontal Laplace operator and F is a known function of variables
at the present and past time levels only. If the boundary condition are known,
equation (3.12) can be solved by either using direct or iterative solvers.

It has been shown that the computational stability of semi-implicit scheme is
very sensitive to the base state temperature profile {e.g. Simmon et al. [40]; Cullen
(5]; Tanguay et al. [42]). If an isentropic base state is chosen, one can only treat
the terms governing acoustic waves implicitly (Tapp and White [43]). While as
shown by Cullen [5] and Tanguay et al. [42] that the terms governing both the
acoustic modes and the fast moving gravity modes can be treated implicitly if an
isothermal base state atmosphere is used.

Longer time steps are achieved at the expense of substantial slowing of the
acoustic modes and in some cases the fast moving gravity modes (e.g. Simmon
et al. [40]). It will be necessary to keep the gravity modes explicit if those are
meteorclogically important, such as the scale interaction studies involving the
gravity modes.

3.2.2. Split-explicit techniques. Similar to the idea of semi-implicit technique,
the split-explicit technique includes two main steps.

(1) Separate the forcing terms into those that are dominant for acoustic modes
and deviations from those terms,

(2) Smaller time steps are used for terms that govern acoustic waves, while
larger time steps are used for the cther terms.

To be practical, this scheme requires that only a few terms in the governing equa-
tions by important for acoustical waves. Following Cotto and Tripoli [4] the split-
explicit technique is described as follows. The momentum equations can be written
a'sﬁ

al; 1 8y

—— =——_—"—+RU; 1

ot po O; ¢ (3.13)
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op' aU;
= = -4 4+ RP 14
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where RU; and RP are the terms governing acoustic waves for the base atmosphere
and (1/po)3P'[0x; and vPy0U,;/8z; are the deviations. A large time step Aty
determined from meteorologically phase speeds with leapfrog scheme is used to
approximate time tendency terms, while a smaller time step Af, is used for the
left side terms. They let Aty = NAt,, where N is an integer. The right side terms,
RUJ; and RP, are evaluated at the T — nAt, time level for the diffusion terms and
7 level for advection and other terms. The left side terms are evaluated on a time
step Aty in a marching process between time level 7 — NAt, and 7+ NA#, in time
steps of 2At,. This process appears in

EJT_NAtS]+2nAt! - D—i[T*NAts]‘*’Z(ﬂ—l)At, + Qﬁts

( 6P ) [r—NAL,|+2(n—1}At,

Po0T; + RUiT’T_Nms} : (3.15)

plir-NAt+2mAt, _ p/lr-NAt +2(n—1)At, +2At,

o0 [r=NAL]+2{n-1)At,
X ("POaTJ-) + RP{’T"NM“] . (3.16)
3
where n = 1,... , NV is the small time step iteration level.

3.3. Boundary conditions

Unrealistic lateral boundary conditions are believed to be a major source of error in
regional primitive equation models because of the ill-posed mathematical nature of
the problem [1]. Same is true for the non-hydrostatic models. This section describes
briefly a few methods to provide boundary condition and to reduce or eliminate
reflection of fast moving waves at boundaries.

One popular method is the sponge {absorbing) method, proposed by Perkey
and Kreitzberg [37]. The sponge method involves utilizing an increased horizontal
eddy viscosity in a narrow band around the lateral boundary. The purpose of this
method is to minimize spurious reflection of wave at the boundaries damping them
in the sponge region. To allow the information obtained from a large scale model
to propagating into the domain, a merging term may be added to the prognostic
equations in the boundary zone. Durran and Klemp {10! applied a sponge layer
at the upper boundary of their non-hydrostatic model to damp spurious energy
reflection from the upper boundary.

The other common method is radiation lateral boundary condition, which min-
imizes the spurious reflection of an cutward propagating wave. The radiation
boundary conditions at lateral boundaries, suggested by Orlanski [36], are com-
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monly used in which the phase speed of a gravity wave impinging on the boundary
is estimated, and all of the variable are advected out of the boundary at the speed.
The success of this method depends on choosing correct phase speed. There are
some modifications of the original Orlanski scheme suggested by several authors
(e.g. Klemp and Lilly [23]; Klemp and Wilhelmson [24]). Miyakoda and Rosati [34]
have found the radiation lateral boundary conditions to be superior to the sponge
method.

It has been found that a properly provided upper boundary condition is very
crucial for a successful simulation when the vertically propagating large amplitude
waves, such as mountain waves ([10], [25]), are present. A radiation upper boundary
condition requires that all energy transported upwards be radiated out through
the upper boundary. Durran and Klemp [10] reported that the radiation upper
boundary condition proposed by Klemp and Durran [25] to be superior to the
sponge layer at the upper boundary.

4. Physical processes

The real atmosphere contains a variety of physical processes with different char-
acteristic length scales. Some of the processes may not be meteorologically impor-
tant, while others are essential for weather systems. Inclusion of these processes
in a numerical model depends on the model resolution. When the model resolu-
tion is not fine enough the implicit methods (or parameterizations) are commonly
used to represent subgrid scale physical processes. For fine resolution models, some
of the processes can be included explicitly, while some of the processes, such as
turbulence, may still have to be parameterized. For example, because the non-
hydrostatic processes are generally not important in synoptic scale motions, one
can simply employ the same physical packages used in hydrostatic large scale mod-
els even though a fully compressible non-hydrostatic system is used. For very fine
model resolutions, where non-hydrostatic processes becomes very important, some
physical processes may need to be treated explicitly, such as convective clouds
(e.g. Yamasaki [47]; Lord et al. [30]; Rotunno and Emanuel [39]). Most of the
non-hydrostatic models are designed to study or forecast the small scale motions,
where some modifications on the commonly used parameterization schemes, such
as Kuo scheme, in large scale prediction models are needed. Inclusion of physi-
cal processes in the hydrostatic and non-hydrostatic models are quite similar. To
give an example of how the physical processes are included in non-hydrostatic
operational forecast model, the following section briefly summarizes the represen-
tation of physics in the non-hydrostatic version of the British Metecrology Office’s
weather forecast model ([2], [15]).

Boundary layer processes are the important processes that have a large impact
on the weather aystems. The radiation and turbulent diffusion processes are the
two major components of the surface heat budget in the model. Both processes are
controlied by the characteristics of the ground, such as surface roughness, wetness,
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albedo, conductivity, and vegetation. The surface processes over land are treated
differently from the ones over ocean. The diurnal changes of surface processes and
the presentation of cloud are also incorporated. The Monin-Obukhov similarity
theory is used to calculate the mixing coefficients of the turbulent diffusion pro-
cesses between the ground surface and first level {at 10 m); the mixing coefficients
above the first level are calculated through the TKE (turbulent kinetic energy)
closure, and the mixing length. The local change of TKE is determined from ad-
vection, turbulent transport, shear production, buoyancy, and dissipation, while
the mixing length is diagnosed and assumed to increase above the ground. The
boundary layer cloud is also predicted in the model.

The nonconvective clouds are one of the main sources that produce precip-
itation, They first calculate the subgrid scale relative humidity accounting the
turbulent variations of the conservative variables and include a term that depends
on layer depth to model non-turbulent variations. The amount of saturated air is
calculated from mean humidity and its variance by assuming a probability distri-
bution. The treatment for convective clouds is somehow different from the one in
large scale model. To parameterize the very important convective processes, the
parameterization scheme by Fritsch and Chappell [12] is used in the model. The
major difference between this scheme and the ones used in large scale model is
that the cloud has a specified lifetime and the cloud can move during its life. The
details of the cloud life cycle are not included.

5. Initialization

Because the numerical weather forecast is basically an initial value problem, initial-
ization would be the most important part leading to a successful numerical weather
forecast if a perfect model were available. The cbservations we get generally in-
clude different scales of motions and physical processes as well as observational
errors, To get a set of dynamically and thermodynamically consistent initial data
initialization procedures are commonly employed. Because of the availability of
more and more satellite and other asynoptic data, a process of merging new obser-
vational data with the ongoing integration of a numerical forecasting mode! known
as “four-dimensional data assimilation” is increasingly used. Excellent review pa-
pers on this subject are provided by Daley {7] and Harms et al. [17]. Here, only a
brief summary of some of the schemes used in non-hydrostatic models is given.
There are several different initialization techniques, such as static initialization,
dynamic initialization, normal mode initialization, nonlinear normal mode initial-
ization, vertical mode initialization, inverse Laplace transformation, and bounded
derivative method. The most commonly used scheme in numerical weather fore-
casting ig nonlinear normal mode initialization scheme. For most non-hydrostatic
models used for research, the initial field is commonly generated from a single
sounding, because of lack of observation data in the small model domain. In the
British Meteorology Office’s non-hydrostatic model the initial model input data
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is combined from three sources: (1) an interpolation of the latest fine mesh fore-
cast (from a 6 hour forecast), (2) a 3 hour mesoscale forecast, and (3) the surface
synoptic observations,

Although there are various four-dimensional data assimilation methods, such as
intermittent data assimilation {(or analysis-forecast cycle), Kalman-Bucy filtering,
and the adjoint method using variational techniques for hydrostatic models, few
are used in preparing data for a non-hydrostatic model. Recently, Kapitza {20]
adopted the adjoint method for an anelastic non-hydrostatic model [21] to merge
the asynoptic radar data into the model.

6. Summary

In this paper, an attempt has been made to offer a brief review of non-hydrostatic
numerical models of the atmosphere for both operational and research purposes.
We described fully compressible non-hydrostatic equations and various vertical
coordinate systems used in non-hydrostatic models. We have also discussed var-
ious assumptions, such as hydrostatic assumption and anelastic approximations,
used to eliminate the fast propagating acoustic waves in the model atmosphere.
Two commonly used time integration techniques for the fully compressible non-
hydrostatic system are briefly reviewed. Finally, the inclusion of physical processes
and initialization and four-dimensional data assimilation were presented.

Recently modeling studies (e.g. Cullen [5]; Tanguay et al. [42]) have shown that
one can use a fully compressible non-hydrostatic model to simulate various weather
systems without any computational penalty compared to a similar hydrostatic
model. More studies on various ways to include physical processes effectively, such
as implicit, or explicit approaches, or a combination of the two, are needed. We
need to investigate the effect of nesting a fine mesh non-hydrostatic model within a
coarser non-hydrostatic model. Much research is needed in merging the asynoptic
data, such as data from radar, lidar, and profiler, in predicting the local severe
weather.

Acknowledgments. This work was supported by the Naval Research Laboratory,
Washington, D.C.

References

[1] Anthes, R.A., Review regional models of the atmosphere in middle latitudes. Mon.
Wea. Rev 111 (1983), 1306-1335

[2] Carpenter, K.M., An experimental forecast using a non-hydrostatic mesoscale
model. Quart. J. Roy. Meteor. Soc. 105 (1979), 629655

[3] Clark, T.L., A small-scale dynamic model using a terrain-following coordinate trans-
formation. J. Comput. Phys. 24 {1977), 186-215



3608 L. Xu, S. Raman, and R.V. Madala

4] Cotton, W.R., Tripoli, G.J., Cumulus convection in shear flow — three-dimensional
numerical experiments. J. Atmos. Sci. 35 (1978}, 1503-1521

[5] Cullen, M.J.P., A test of a semi-implicit integration technique for a fully compressible
non-hydrostatic model. Quart, J. Roy. Meteor. Soc. 116 (1990}, 1253-1258

[6] Cullen, M.J.P., Davies, T., A conservative split-explicit integration scheme with
fourth-order horizontal advection. Quart. J. Roy. Meteor. Soc. 117 (1991), 993-1002

[7] Daley, R., Atmospheric Data Analysis. Cambridge University Press, Cambridge, MA
1991

[8] Daley, R., The normal modes of the spherical non-hydrostatic equations with appli-
cations to the filtering of acoustic modes. Tellus 40A (1988}, 96-106

[9] Durran, D.R., Improving the anelastic approximation. J. Atmos. Sci. 46 (1989),
1453-1461

[10] Durran, D.R., Klemp, J.B., A compressible model for the simulation of moist moun-
tain waves. Mon. Wea. Rev. 111 {1983), 2341-2361

{11] Dutton, J.A., Fichtl, G.H., Approximate equations of motion for gases and lLiquids.
J. Atmos. Sci. 26 (1969), 241-254

[12] Fritsch, J.M., Chappell, C.F., Numerical prediction of convectively driven mesoscale
pressure systems. Part I: Convective parameterization. J. Atmos. Sci. 37 (1980),
1722-1733

[13] Gadd, A.J., A split-explicit scheme for numerical weather prediction. Quart. J. Roy.
Meteor. Soc. 104 {1978), 569-582

[14] Galchen, T., Somerville, R., On the use of a coordinate transformation for the solu-
tion of Navier-Stokes equations. J. Comput. Phys. 17 (1975), 209-228

[15] Golding, B.W ., Short range forecasting over the United Kingdom using a mesoscale
forecasting systern. Proc. WMO/IUGG NWP Symposium, Tokyo, Japan {August
4-8, 1986), 563-572

(18] Gough, D.O., The anelastic approximation for thermal convection. J. Atmos. Sci.
26 (1969), 448456

{17] Harms, E.D., Raman, S., Madala, R.V., An examination of four-dimensional data-
assimilation techniques for numerical weather prediction. Bull. Amer. Soc. 73 (1992),
425-440

(18] Hemler, R.S., Frank, B.L., Ross, B.B., A simulation of a squall line using a non-
hydrostatic cloud model with a 5 km horizontal grid. Mon. Wea. Rev. 119 (1991),
3012-3033

(19] Hill, G.E., Factors controlling the size and spacing of cumulus clouds as revealed by
numerical experiments. J. Atmos. Sci. 30 (1974), 1672-1690

[20] Kapitza, H., Numerical experiments with the adjoint of a non-hydrostatic mesoscale
model, Mon. Wea. Rev. 119 (1991), 2993-3011

[21] Kapitza, H., Das dynamisches Gerst eines nicht-hydrostatischen Mesoskalen-Modells
der atmosparischen Zirkulation. dissertation University of Hamburg, Report GKSS
87/E/35, Germany 1987 (in German)

[22] Kwizak, M., Robert, A.J., A semi-implicit scheme for grid point atmosphere models
of the primitive equations. Mon. Wea. Rev, 99 (1971}, 32-36

[23] Klemp, J.B., Lilly, D.K., Numerical simulation of hydrostatic mountain waves. J.
Atmos. Sci. 35 (1978}, 78-106

[24] Klemp, J.B., Wilhelmson, R.B., The simulation of the three-dimensional convective
storma dynamics. J. Atmos. Sci. 35 (1978), 1070-1096

{25] Klemp, J.B., Durran, D.R., An upper boundary condition permit internal gravity
wave radiation in numerical mesoscale models. Mon. Wea. Rev. 111 (1983), 430444



Review of non-hydrostatic aumerical models for the atmosphere 3609

[26] Kogan, Y.L., The simulation of a convective cloud in a 3-D model with explicit
microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci.
48 (1991), 1160-1189

[27] Lipps, F.B., On the anelastic approximation for deep convection. J. Atmos. Sci. 47
(1990), 1794-1798

[28] Lipps, F.B., Hemler, R.S., A scale analysis of deep moist convection and some related
numerical calculations. J. Atmos. Sci. 43 (1986}, 1796-1816

[30] Lord, S.1., Willoughby, H.E., Piotrowicz, J.M., Role of a parameterized ice-phase
microphysics in an axisymmetric, non-hydrostatic tropical cyclone model. J. Atmos.
Sci. 41 (1984), 28362848

[31] Miller, M.J., White, A.A., On the non-hydrostatic equations in pressure and sigma
coordinates. Quart. J. Roy. Meteor. Soc. 110 (1984}, 515-533

[32] Miller, M.J., On the use of pressure as vertical coordinate in modeling convection.
Quart. J. Roy. Meteor. Soc. 100 (1974}, 155-162

[33] Miller, M.J., Pearce, R.P., A three-dimensional primitive equation model of cumu-
lenimbus convection. Quart. J. Roy. Meteor. Soc. 100 {1974), 133-154

[34] Miyakoda, K., Rosati, A., One-way nested grid models: The interface condition and
numerical accuracy. Mon. Wea. Rev. 105 (1977), 1092-1107

[35] Ogura, Y., Philips, N.A., A scale analysis of deep and shallow convection in the
atmosphere. J. Atmos. Sci. 19 (1962), 173-179

[36] Orlanski, I., A simple boundary condition for unbounded hyperbolic flows. J. Com-
put. Phys. 21 (1976), 251-269

[37) Perkey, D.J., Kreitzberg, C.W., A time-dependent lateral boundary scheme for
limited-area primitive equation models. Mon. Wea. Rev. 104 81976}, 744755

[38] Robert, A.J., The integration of a spectral model of the atmosphere by the implicit
methods, Proc. of the WMQ/IUGG Symp. on NWP, Tokyo, Japan Meteor. Agency
VII (1969), 19-24

[39] Rotunno, R., Emanuel, K.A., An air-sea interaction theory for tropical cyclones.
Part II: Evolutionary stucly using a non-hydrostatic axisymmetric numerical model.
J. Atmos. Sci. 44 (1987), 542-561

[40] Simmons, A.J., Hoskins, B.J., Burridge, D.M., Stability of the semi-implicit method
of time integration. Mon. Wea. Rev. 106 (1978}, 405-412

[41) Skamarock, W.C., Numerical methods for non-hydrostatic models. Proc. Numerical
Methods in Atmospheric Models, United Kingdom (September 9-13, 1991), 191-215

[42] Tanguay, M., Robert, A., Laprise, R., A semi-implicit Lagrangian fully compressible
regional forecast model. Mon. Wea. Rev. 118 (1890}, 1970-1980

[43] Tapp, M.C., White, P.W., A non-hydrostatic mesoscale model. Quart. J. Roy. Me-
teor. Soc. 102 (1976), 277296

[44] White, A.A., An extended version of a non-hydrostatic, pressure coordinate model.
Quart. J. Roy. Meteor. Soc. 115 (1989), 1243-1251

[45] Wilhelmson, R., Ogura, Y., The pressure perturbation and the numerical modeling
of a cloud. J. Atmos. Sci. 19 (1972), 173-179

[46] Xue, M., Thorpe, A.J., A mesoscale numerical model using the non-hydrostatic
pressure-based sigma-coordinate equations: Model experiments with dry mountain
flows. Mon. Wea. Rev. 119 (1991), 1168-1185

[47] Yamasaki, M., A preliminary experiment of the tropical cyclone without parameter-
izing the effects of camulus convection. J. Meteor. Soc. Jap. 55 (1977), 11-30





