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Abstract

Four-dimansional data-assimilation methods, along with the
most commonly used objective analysis and initialization tech-
nigques, are examined from a historical perspective. Operational
techniques, including intermittent data assimilation and Newtonian
nudging, and next-generation methods (Kalman—Bucy filtering and
the adjoint method) are briefly described. Several methods are
compared, with primary emphasis being placed on recent papers
dealing with the operational assimilation techniques. Ongoing and
future research is outlined, and some important implications of this
research are discussed.

1. Introduction

Two major motivations for using data assimilation
exist: as an analysis/diagnostic/research tool and for
operational weather forecasting. Data assimilation
has been applied not only in meteorology (air pollution
and planetary boundary-layer studies, forecast case
studies, guantitative assessment of new observing
systems, among others}, but also in oceanography for
describing ocean currents (Ghil 1988; Robinson 1986).
To summarize all relevant work pertaining to data
assimilation is indeed a difficult task, because the
contents are spread so widely. The purpose of the
present paper is only to provide an overview of four-
dimensional data assimilation with primary emphasis
on assimilation methods currently useful for opera-
tional weather forecasting. To make this review more
complete, attention has also been given to the state-
of-the-art or “next-generation” techniques, but to a
lesser extent. Excellent reviews covering the early
days of data-assimilation research in both simulation
and real-data studies are available in the literature.
The interested readeris referredto Bengtsson (1975a),
McPherson (1975), Hollingsworth {1986), and Bourke
et al. (1985). Plus, a comprehensive history of data
analysis and assimilation is given by Daley (1991).

Numerical weather prediction (NWP) has classi-
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cally been viewed as an initial-value problem where
the governing equations of geophysical fluid dynamics
are integrated forward in time from a set of initial
values. The quality of NWP is strongly dependent on
the accuracy of specifying these initial conditions and
on the ability to model mathematically the dynamics
and physical processes of the atmosphere. In a pio-
neering paper, Charney et al. (1969) suggested com-
bining past and current data ina numericalmodel such
that the model's equations provide time continuity and
dynamic coupling among the atmospheric fields. This
concept, which has merged objective numerical analy-
sis and numerical weather prediction, has become
known as four-dimensional data assimilation {FDDA)
and has proven to be a major advance in NWP during
the past 20 years.

Whatinspiredthis majoradvance, or in other words,
what spurred this development of data assimilation?
The advent of meteorclogical satellites in the 1960s
raised the possibility that nearly continuous atmo-
spheric temperature observations would be available
on a global basis. However, these space-based ob-
serving systems measure only radiance (or tempera-
ture) distributed in space and time, rather than at fixed
locations and times. In order to fully utilize this new
source of data, the numerical weather prediction tech-
niques had to be adjusted. Beginning with Charney et
al. {1969), Smagorinsky et al. (1970), Rutherford
(1972), and Morel and Talagrand (1974), research
progressed in reconstructing unobserved variables
from the observed variables through the numerical
model's dynamical coupling between those variables.
By combining information about the state of the atmo-
sphere, earlier observations are carried forward to
provide an independent source of information to be
added to the newly acquired observations.

Morel (1981) further illustrated why data assimila-
tion is essential in NWP by listing five key reasons: 1)
the inadequate distribution {spatial gaps) of the twice-
daity upper-air sounding data, 2) the discrepancy
between the conventional cbservations as point mea-
surements and the true volume averages required by
numerical models, 3) the inherently asynoptic charac-
ter of remote observations obtained from sunsynch-
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Fia. 1. Successive reduction of wind error using a direct insertion {upper curve) of height data in a barotropic model.
Corresponding results using height as well as from the derived geostrophic winds (lower curve) (McPherson 1975).

ranous orbiting satellites, 4) the inadequate vertical
resolution of remote observations of cloud motions
from geostationary satellites, and 5) the significant
random and systematic errors involved in the data
processing required for reconstructing atmospheric
fields from remotely measured physical quantities. He
concluded that any weather prediction model must be
initialized by merging the new observations with the
currently estimated meteorological fields, computed
on the basis of earlier observations, while taking into
account the dynamical constraints between succes-
sive model states, specified by the governing dynami-
cal equations.

This process of merging new observational data
with the ongoing integration of a numerical forecasting
modelis known as “data assimilation” or, equivalently,
“four-dimensional data assimilation,” in consideration
of the time-space distribution of the database. Then,
as stated by Warner (1987), "the overall objective of
the assimilation process is to provide the best possible
initial state from which to begin a forecast, where the
term 'best' implies an appropriate balance and reflects
optimal use of four-dimensional data {synoptic as well
as asynoptic) to define the structures on all scales at
the initial time."

In the past 20 years, many techniques have been
developed to insert data into dynamic models. How-
ever, the first data-assimilation experiments were
simplistic and of limited success. The observation
simply replaced the model forecast value at the model
grid point nearest the observation location {Jastrow
and Halem 1870). This technique, known as direct
insertion, is inadequate from the initialization point of
view (Bengtsson 1975b). Directinsertion gives a shock
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tothe system and generates high-amplitude waves, or
gravitational oscillations. For example, if observations
of the mass field are inserted into a primitive equation
model, animbalanceis created between the mass and
wind fields. When the model integration is resumed,
this imbalance is manifested as high-amplitude gravi-
tational oscillations; this is the model's attempt to
restore the dynamic balance, which was disrupted by
the data insertion. Techniques such as damping time-
integration schemes and time filters ware developed
to dampen these nonmeteorological waves. However,
this damping must be rather strong and can be harmful
tothe meteorological modes. Bengtsson (1975b) stated
that the shock effect will be reduced iflocally analyzed
data (interpolating the observation to several nearby
grid points) are inserted into the model instead of
observations only {indirect insertion). For example,
applying a local multivariate analysis, or, correspond-
ingly, relating wind and geopotential by the geostro-
phic relation and inserting both height and winds
simultaneously proved successful by speeding the
updating considerably (Fig. 1). The multivariate proce-
dure mentioned here produces a simultanaous weight-
ing of mass and motion observations, subject to the
constraint of geostrophicity (Petersen 1968; Eddy
1973; Daley and Puri 1980).

Of the several FDDA methods that have been
investigated over the last two decades, some have
beenimplemented operationally while others have not
yetbeenused orare in the developmental stage. Inthe
1870s, regional/imesoscale weather forecasting mod-
els were developed, normal mode initialization was
introduced, and global data assimilation became op-
erational. With the advent of mesoscale modeling,
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FDDA applications are also geared toward the me-
soscale, with the emphasis shifting from applications
on the global scale.

In operational numerical prediction systems, FDDA
can be categorized into two broad areas: continuous
method and intermittent {analysis—forecast cycle)
method. The former refers to the insertion of data into
a model as it is received, in a temporally continuous
fashion. The analysis—forecast cycle clearly illustrates
the four components of data assimilation: quality con-
trol, objective analysis, initialization, and an initial
guess from a short-range forecast. With this method,
the data are assimilated intermittently at specified
intervals. So-called next-generation data-assimilation
methods are being researched today, with the two
most prevalent being the adjoint method based on the
variations of calculus and the Kalman—Bucy filter
technique.

Since quality control, objective analysis, and initial-
ization are intricate parts of data assimilation, it is
appropriate to consider each of these components in
the present paper. Quality control methods are out-
lined in section 2. The most commonly used objective
analysis and initialization techniques are overviewed
in sections 3 and 4, respectively, followed by a discus-
sion of various data-assimilation methods in section 5.
Then, in section 6, two studies, comparing operational
data-assimilation technigues, are reviewed. Section 7
outlines some implications of FDDA and highlights
ongoing and future research in data assimilation.
Finally, a summary is given in section 8.

2. Quality control

Quality control is an integral part of a data-assimi-
lation system. Quality-control algorithms are designed
to modify or reject erroneous meteorological data.
Following Daley (1991}, observational data errors can
be classified into two groups: natural error and gross
{or rough) error. The natural error includes instrument
error and error of representativeness. The data de-
scribe the behavior of the instrument itself, not the
behavior of the meteorclogical parameter it is in-
tended to measure. Every instrument is approximate
by its very nature. Errors of representativeness are
deviations caused by small-scale perturbations and
are also referred to as micrometecrological errors.
Gross errors originate from improperly calibrated or
malfunctioning instruments, incorrect registration of
observations, incorrect coding of observations, and
telecommunication errors. These etrors (natural and
gross) can be either random or spatially or temporally
correlated, and there can be systematic biases. The
systematic errors can result from improper calibration
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of an instrument or from the influence of some persis-
tent factor that is not accounted for or is accounted for
inaccurately.

Several quality-control techniques are used rou-
tinely to screen bad data. These techniques can be
divided into four major categories (following Gandin
1988). The first two, plausibility check and check for
contradictions, are used to identify gross errors based
on the physical reasonableness of the data. Plausibil-
ity checks are the most widely used guality-control
methods. These checks analyze each datumindepen-
dently of other data. A simple plausibility check is one
that rejects data values that can never occur in reality
—for example, positive temperatures (°C) at 300 mb.
Other versions compare the datum with the climato-
logical mean or with a background field (numerical
forecast). If the deviation is too large, the datum may
be rejected. The check for contradictions is based on
an analysis of two or more parameters at the same
point. An example is the occurrence of rain in the
absence of clouds.

Quality control is an integral part of a
data-assimilation system. Quality-con-
trol algorithms are designed to modify
or reject erroneous meteorological data.

The remaining quality-control procedures include
checks that rely on some common information and
redundancy between observations. The spatial conti-
nuity (or consistency) check compares a datum with
data at adjacent locations. This method, also known
as the buddy check, demands spatial consistency
among the data. A temporal continuity check can also
be made in which temporal continuity is required with
past observations. Finally, checks using dynamicrela-
tions such as the geostrophic or hydrostatic reiation
can be used to check geopotential height with tem-
perature and mass with wind. These checks require
the data to obey the dynamic relation at least approxi-
mately, otherwise the data are suspected or rejected.

The necessity for including automated quality con-
trol in operational NWP was recognized during the
early era of NWP. Significant advances have been
made in quality control, including the development of
methods using optimum interpolation (Rutherford 1976;
Lorenc et al. 1977; Lorenc 1981). Recent advances
include the complex quality-control method of Gandin
{1988) and the Bayesian approach of Lorenc and
Hammaon (1988). Reviews on various quality contral
methods have been authored by Belousov et al.
(1968), Gustavsson (1981), and Lorenc (1985).
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3. Objective analysis techniques

Objective analysis (the second major component of
FDDA) and quality control have become intertwined
and, as a result, the data-assimilation process is more
internally consistent. Excellent reviews on abjective
analysis have been presented by McPherson (1976)
and Gustavsson (1981). The present discussion con-
tains a synopsis of selected topics from these two
reviews. According to McPherson (1976), objective
analysis is a process in which meteorological observa-
tions distributed in space and time are combined with
forecasts from previous analyses and perhaps with
climatology to form a numerical representation of the
state of the atmosphere. This representation takes the
form of values of the meteorclogical variables at
regularly spaced grid points subject to various math-
ematical and physical constraints.

The objective analysis process consists of three
subprocesses that are essential for the overall suc-
cess or effectiveness of the FDDA system: 1) filtering
of small-amplitude random and systematic errors; 2)
interpolation to a regular network of grid points or, in
the case of spectral analysis, integration of the repre-
senting mathematical space functions overthe irregu-
larly spaced observations; and 3) forced adjustment of
the meteorological variables using dynamic relation-
ships among these variables.

Within a relatively short period of time, objective
{numerical) analysis schemes were independently
developed by several metecrologists. Panofsky (1949)
devised the first objective analysis method—polyno-
mial interpolation, or the so-called surface-fitting type.
Anextension of this method was developed by Gilchrist
and Cressman (1954) and became the first opera-
tional objective analysis. In this technigque, mathemati-
cal {polynomial) functions are adjusted to observed
data in the close vicinity of the grid point, for which
analyzed values are required. The adjustment or fitis
obtained by a least squares technique. The polyno-
mial method is nonlinear since nonlinear functions are
used to approximate the variation of the analyzed
variable. However, the resulting analyzed value at the
grid poirtis a linear function of the observed data and,
in this respect, this method is similar to tha other
analysis methods that will be described.

Bergthorsson and D&ds (1955) introduced the suc-
cessive correction method, and a similar method was
devised by Cressman (1959). Cressman's successive
correction technigue essentially replaced the polyno-
mial interpolation method because the latter produced
unreasonable analyses at the edge of data-rich and
data-sparse areas. In the successive corrective tech-
nique, a forecast model provides the preliminary esti-
mate (first guess) of the field to be analyzed. The basic
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idea of the methoed is to correct this preliminary field
iteratively during several analysis “scans”; the results
of one scan become the first guess for the next scan.
The estimate is modified by a combination of correc-
tions computed for each grid point. The corrections,
which are proportional to the difference between the
observed and first-guess values, are weighted empiri-
cally, with observations nearestthe grid pointweighted
the most heavily.

By using a short-range forecast based on a previ-
ous analysis as the first guess, the effect of past data
is allowed to influence the analysis and thereby con-
tributes to the temporal continuity and spatial coher-
ence of the analysis. For many years, successive
correction methods were most widely used in opera-
tional forecast centers.

By using a short-range forecast based
on a previous analysis as the first
guess, the effect of past data is allowed
to influence the analysis and thereby
contributes to the temporal continuity
and spatial coherence of the analysis.
For many years, successive correction
methods were most widely used in
operational forecast centers.
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This early dominance of the successive correction
methods was taken over during the last decade by
statistical (optimal) interpolation schemes, which were
originally introduced by Eliassen (1954) and Gandin
(1963). Statistical interpolation was also studied ex-
tensively by Alaka and Elvander (1972) and Phillips
(1976). This analysis technique is based on statistical
linear regression and provides a systematic frame-
work for blending observations of differing error char-
acteristics with recent predictions or climatology. More
accurate data receive more weight in the analysis. As
in the successive correction method, the analyzed
value at the grid point is the sum of the first guess and
a linear combination of corrections, which are propor-
tional to the difference between observational and
first-guess values. The weighting coefficients are de-
termined from the condition that the mean-square-
error of the analyzed values be minimum, and they
depend on the spatial covariances among the ana-
lyzed variables. This method is, in principle, spatially
coherent and, like its counterpart of successive cor-
rection, incorporates temporal continuity through the
use of a short-range forecast from the preceding
analysis as a first guess.
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The polynomial interpolation method mentioned
earlier reappeared in the British Meteorological Office
analysis (Dixon etal. 1972) andinthe spectral analysis
method devised by Flattery (1971). In the spectral
analysis technique, mathematical functions are glo-
bally adjusted to fit observed data. One additional
analysis method that has been utilized in the FDDA
context (see discussion in section 5) is the variational
technique introduced by Sasaki (1958). This method
is a post-analysis adjustment technigue based on the
calculus of variations and is very effective in making
the analyzed fields compatible with a forecast model.
A functional is used, which minimizes the analyzed-
minus-cbserved difference, filters undesirable high-
frequency and high-wavenumber features, and em-
ploys dynamical constraints. These constraints may
be strong (satisfied exactly) or weak (satisfied ap-
proximately).

Over the past 30 years, numerous variations of
these different objective-analysis metheds have been
developed. Some versions are hybrids belonging to
more than one of the aforementioned techniques.

According to McPherson (1976), objective-analy-
sis methods used in operational meteorology can be
divided into two basic categories. The first represents
an analyzed field as a series expansion (spectral
analysis):

Z=af+af+...+af,

m

(3.1)

where Z represents the departure of the field from its
mean value. The f represents a set of orthogonal
functions—for example, a cosine series. The analysis
procedure involves the determination of the time-
dependent coefficients a, which make the series ex-
pansion best fit the observed data by, for example, a
least-squares technique. Analysis methods of this
type are in operaticnal use at the National Meteoro-
logical Center (NMC) (Flattery 1971; Hayden 1976)
and the United Kingdom Meteorological Office (UKMO)
{Dixon 1976).

The second basic method, called the “gridpoint”
method, includes statistical interpolation and succes-
sive correction technigues. Here, the analyzed value
Z_ata discrete point gis given by a linear combination
of observations that are nearby in time and space:

Zi=aZi+ a,Zy+ . .. + a2,

n=n?

(3.2)

where 2* represents observed values at the several
stations within some predetermined influence radius
of point g, and the coefficients a, determine the influ-
ence of each cbservation on the analyzed value. Inthis
case, the analysis involves determining the coeffi-
cients a,in the linear combination for each point of the
analysis grid.
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Two forms of representation are associated with
these two basic methods of analysis: the discrete form
and the spectral form. In the former, the analysis is a
setof values at discrete points in space andtime; inthe
latter, the analysis is represented by a series expan-
sion such as (3.1). The spectral form has been used
primarily for global and hemispheric applications. The
discrete form has been extensively used for limited-
area applications in mesoscale meteorology.

4. Initialization techniques

The objective-analysis methods described in the
previous section generally do not provide balanced
mass and wind fields to initiate a forecast.
Uncompensated errors in wind and pressure—tem-
perature observations, interpclation of observations
to model grids, and the numerical model’'s inahility to
exactly describe the atmosphere are the primary
sources of this dynamical inconsistency. The dynami-
cal imbalances in the initial data lead to the generation
of spurious inertia—gravity-wave oscillations, or “me-
teorological noise.” Primitive equation models, unlike
geostrophic models, admit these higher-frequency
gravity-wave solutions that can have amplitudes much
greater than their counterpart in the real atmosphere.
These gravity-wave oscillations can obscure the lower-
frequency Rossby-mode component of the model,
which constitutes the meteoroiogical signal. Early
numerical modelers called attention to the need to
eliminate the spuricus high-frequency oscillations,
which can compromise the forecast procedure. First of
all, these fast-moving gravity waves require short
computational time steps; second, they can seriously
interfere with very short-range forecasts {<12 h); and
third, they can impair vertical motion and, hence,
precipitation forecasts (Daley 1981). Therefore, a
long-standing approach has been to eliminate or ef-
fectively reduce these fast-moving inertia—gravity
waves at initial forecast time. This process is known as
model initialization. Charney (from unpublished letter
to Phillip Thompson, 12 February 1947} provided
insight for rectifying this initialization problem by sug-
gesting that one should modify the initial state or
modify the governing equations; that is, use filtered
models.

The first and simplest approach was to exclude any
possibility of the high-frequency oscillations by using
a "filtered system” such as the balance eguationsg,
which simply reduce the model dynamics to the
guasigeostrophic response. However, this approach
severely restricts the model dynamics, which resultsin
very poor forecasts beyond 24 hours. The so-called
primitive equations account for more atmospheric
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dynamics and can yield much better forecasts, so they
are generally used. However, the primitive equations
doallow the amplification of fast-moving gravity waves,
which requires some modification of the initial condi-
tions to achieve the desired dynamical balance.
Over the years, many initialization methods have
been developed. A summary of the more widely used
techniques is presented here. For a more detailed
review, the reader is referred to Daley (1991). In static
initialization, the data are adjusted at a single time
level to conform to some dynamical constraints. That
is, certain time derivatives are identified as vanishing,
in order to eliminate or reduce the generation of
inertia—gravity-wave noise. In the conventional static
initialization, a standard practice is to first analyze the
geopotential field using pressure-height data and use
wind observations to estimate the gradient of the
geopotential using the geostrophic relation. The ana-
lyzed geopotential fields on pressure surfaces are

[ = T, ; !
fl e o

The most common approach

tion in intermittent FDDA is normal mode
initialization, which achieves dynamical
balance using the normal modes of the
linearized dynamical equations.

o . LI e s

then used in the mass balance equation to obtain the
streamfunction of the nondivergent wind, from which
the rotational wind component can be computed. A
major limitation in using the balance equation to deter-
mine a rotational wind for initializing a primitive equa-
tion model is that the lack of a divergent wind compo-
nent insures the presence of gravitational modes
{Haltiner and Williams 1980).

The most common approach of initialization in
intermittent FDDA is normal mode initialization, which
achieves dynamical balance using the normal modes
of the linearized dynamical equations. The direct use
of normal modes was introduced by Dickinson and
Williamson (1972). They proposed that the amplitudes
of the unwanted, fast-moving modes be set to zero.
Their method was effective in suppressing the spuri-
ous noise in linear models, but failed in the nonlinear
case. Anonlinear normal mode scheme was indepen-
dently developed by Machenhauer (1977) and Baer
{1977). In nonlinear normal mode initialization, the
tendency of the unwanted modes are set to zero,
versus setting the amplitude of these modes to zero.
The solution of the nonlinear equation requires an
iterative process. Unfortunately, this noniinear scheme,
without the inclusion of diabatic effects, suppressed
the meridional circulation in the tropics. Puri and

430

Bourke (1982) used the ideathat the tropical divergent
circulations driven by convection mainly influence the
low-frequency gravity modes. Therefore, they ex-
cluded these low-frequency modes from the initializa-
tion using a frequency cutoff. Wergen (1882) intro-
duced another method in which average diabatic
heating is obtained by integrating the model for a few
time steps prior to initialization. This model-produced
diabatic heating is then included in the nonlinear
forcing in the iterative process.

In global models (Andersen 1977; Daley 1979,
Temperton and Williamson 1981; for example), after
the normal modes of the model are computed, the
high-frequency inertia—gravity waves can be removed
by projecting the inertial wind and mass fields onto
these normal modes. However, in limited-area models
itis not possible to define the horizontal structure of the
normal modes.

Bourke and McGregor (1983) introduced a method
of initializing a limited area model without explicitly
computing herizontal normal modes. Inthis technique,
termed vertical mode initiafization, the free modes of
oscillation of the prediction model are identified by
linearizing the equations about a basic state of rest.
This linearization permits a simple decomposing of the
three-dimensional sigenvalue problem into a series of
two-dimensional problems. The vertical decomposing
leads to a number of characteristic vertical modes, one
corresponding to each discrete level in the model.
Balance conditions on the horizontal structure equa-
tions are then derived for each vertical mode. Filtering
conditions, in which the tendencies of divergence and
ageostrophic vorticity are set to zero, are applied to
derive linear diagnostic equations for the mass and
divergency fields. In Fig. 2, from Bourke and McGregor
{1983), graphs of surface pressure before and after
initialization using the Australian regional primitive
eguation medel are shown. It is obvious that the
initialization procedure successfuily removed noise
from the integrations.

Temperton (1988) devised a method of applying
Machenhauer's criterion without requiring the compu-
tation of the coefficients of the individual modes.
Figure 3 (from Temperton 1988) shows graphs of
500- mb geopotential before and after the application
of Temperton's implicit normal-mode initialization for
the Canadian finite-element model. This method
is also successful in removing the high-frequency
noise.

Although appropriate for intermittent FDDA, the
normal-mode initialization is a distinct, separate step
from the objective analysis and usually leads to changes
in model parameters. As a result, the initialized analy-
sis may no longer fit the observations as closely as
desired. An aiternative, known as dynamic initiaiiza-
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tion, has the advantage of aveiding
the complications of computing nor-
mal modes. In this method, which
was introduced by Miyakoda and
Moyer (1968), observations are in-
serted (intermittently or continu-
ously) over a period of time. The
method has the added advantage of
simplicity and can balance physical
processes as well as the mass and
wind fields. In dynamic initialization,
the model equations were integrated
forward and backward through time
under controls that encourage time
derivatives to become small com-
pared to spatial derivatives, which
in turn selectively dampened the
high-frequency components of the
solutions. Early versions of this tech-
nique required several repetitions
of the integration cycle to success-
fully reduce the gravity-wave oscil-
lations and, as aresult,theseschemes
were computationally expensive,
Another disadvantage was that the
slow modes of the model were damp-
ened.

More recently, researchers in-
cluding Bratseth (1982), Sugi(19886),
and Satomura {1988) have devel-
oped schemes that are more
computationally efficient and have
more selective damping properties.
Figure 4 (from Sugi 1986) depicts
graphs of the gravity-wave activity
{before and after initialization) for
five vertical modes of a baroclinic
model. The gravity-wave noise is
dramatically reduced, particularly for
the modes of large equivalent
depths. Dynamic initialization, as
well as the Laplace transform and
bounded derivative methods (de-
scribed below), is well suited for
initializing data on a limited domain.

Lynch {1985a) developed an ef-
fective method of initialization based
on a filtering scheme that uses a
modified inverse Laplace transform.
This technique is equivalent to the
nonlinearnormal-mode initialization
method, but it has the advantage of
not requiring a transformation of the
maodel equations into normal mode
space. Therefore, the Laplace trans-
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5. Various data-assimila-
tion methods

An assimilation method ex-
tensively used in operational me-
teorology is the analysis—fore-
cast cycle technique, commonly
referred to simply as intermittent
data assimilation (see Fig. 5).
This process consists of four
steps, whichare repeated ateach
assimilation cycle (typically ev-
ery 3—12 h). After the data have
been checked {(quality con-
trolled), a static three-dimen-
sional objective analysis (typi-
cally successive correction or
optimal interpolation) is per-
formed using observations and
a background field. The back-
ground or “first guess” is usually
a prior model forecast valid at

5830 .05 74

Hours

17,

Fia. 3. Time trace of height field. Heavy line: ne initialization. Light line: after two iterations
of the implicit nenlinear normal-mode initialization scheme (Temperton 1988).

form method is well suited for initializing limited-area
models with complex boundary conditions. Lynch
(1985b) used his method to initialize data for a
barotrophic limited-area model, successfully remov-
ing high-frequency gravity- wave oscillations during
the model integration. This technique has also been
appliedin a filtering integration scheme for continuous
data assimilation.

Another technique, which has been used to initial-
ize medels of limited domain, is the bounded deriva-
tive method. Kreiss (1979) developed the methodol-
ogy of controlling the amplitudes of the high-frequency
inertia—gravity waves by requiring the derivatives of
the model's dependent variables with respect to time
to be bounded, i.e., of order unity, as the initial time.
First, the equations of motion are nondimensionalized
so that certain terms are multiplied by a small param-
eter, e. Then, if the first derivatives are bounded, the
equations can only he satisfied if the model atmo-
spheric flow is geostrophic and nondivergent to the
order e. if the second-order time derivatives are
bounded, the resulting diagnostic relationships are the
quasi-geostrophic omega equation and the nonlinear
balance equation.
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the analysis time, oritcan simply
be climatology or a combination
ofboth. Then, the analyzedfields
are adjusted, or initialized, to
conform to some dynamical
constraint(s) in order to reduce
oreliminate inertia—gravity-wave
neoise. The final step consists of
ashort-range numerical forecast
to obtain first-guess fields for the analysis at the next
assimilation cycle. Thus, the new estimates (analyzed
fields) are clearly based on the past observations,
being carried forward in time by the model forecast,
and on the current observations. The intermittent
updating process is entirely appropriate as tong as
most available data are taken at the same time, for
example, at synoptic times. This technique is currently
used atmost of the world's major operational forecast-
ing canters, including the NMC, (DiMego 1988); the
Norwegian Meteorological Institute (Gronas and Midtbo
1986); and the European Centre for Medium-Range
Weather Forecasts (ECMWF} (Hollingsworth 1986).

The extensive operational use of intermittent data
assimilation is primarily due to its computational effi-
ciency. In addition, this method normally includes a
normal-mode initialization scheme that produces a
balanced mass/wind initial state. A disadvantage of
this method is that it is not totally suited for asynoptic
data types; that is, it can not assimilate data continu-
ously. However, updates onthe order of every 2to 3 h
can be made, allowing some asynoptic data into the
assimilation.

Two other mathematically elegant methods,
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{ constraints in a variational treat-
ment and has been pursued by
Sasaki (1969), Stephens (1970),
and others forseveral years. Invaria-
tiona! calculus, staticnary peints
(extrema) of integral expressions
known as functionals are deter-
-] mined. Jis a functionai of the func-
tion g(} in the interval (¢, t), if it
depends on all the values g{f) for {
<t<t . Inthis approach, successive
analyses are mutually adjusted to
effectively increase the database at
each time step by using information
at other analysis times through the
forecast equations. The objective is
to produce initialized values of g
subject to certain constraints, such
as the hydrostatic relation, the con-
tinuity equation, the geostrophicre-
lation, or the nonlinear balance
equation. The approach is designed
to keep the initialized fields close to
the observations while satisfying the
constraint (Daley 1991).

Lewis (1972) developed a varia-
tional scheme using a thermal wind
relationship and the hydrostatic
equation as constraints. A more
recent variational approach, Known
as the adjoint method (Lewis and
Derber 1985), uses a complete dy-
namic model as a strong consiraint.
This method fits a model to obser-
vational data distributed over a fi-
nite period by computing deriva-
tives of model output. An iterative
method minimizes the weighted
squared difference between the
original analyses at several times

Y

10%
1 2 3

VERTICAL MODE (j)

Fic. 4. Gravity-wave activity (before and after initialization) for five vertical modes of a

baroclinic model (Sugi 1986).

Kalman-Bucy filtering and the adjoint method using
variational techniques, have emerged as state-of-the-
artmethodology in FDDA. The latteris briefly reviewed
first. For a more rigorous and complete discussion of
the general theory of these two techniques, the reader
is referred to Daley (1981).

Variational assimilation, based on the calculus of
variations, involves the incorporation of dynamical
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and the coineident solutions to the
model (constraint) for a given out-
put variable. The final analyses are
constrainedto satisfy the modelfore-
cast from a set of initial conditions.
The functional, J, is minimized by
finding the gradient of Jwith respect
to the initial conditions.

The output of any model depends upon a set of
input variables: initial conditions, boundary condi-
tions, and even modeling parameters of physical
processes. Because of this dependence, the “adjoint”
can be used to determine the sensitivity of the model
output to any input parameter, i.e., initial conditions.
Neglecting forecast errors over the assimilation period

433



I OBSERVATIONS |
Y515 I

| INITIALIZATION 1

PREDICTION

INITIALI

| OBSERVATIONS I
AYALYSIS I

urion |

ZATION

PREDICTION

| OBSERVATIONS |

f

Fic. 5. Intermittent data assimilation using an analysis—forecast cycle (Bengtsson 1975).

{time period spanning the observations), this tech-
nigue can produce the optimal initial state (end of the
assimilation period) such that the model best fits the
observations through the entire period.

The alternate “next-generation” FDDA method is
called Kalman—Bucy (K-B) filtering. The K~B method
can be thought of as a continuous dynamic FDDA
where the weighting factors are optimally determined
by explicitly calculating the error covariance of the
analysis. In 1960, Kalman developed the basic theory
for the linear, unbiased data-assimilation scheme
known as the Kalman filter {(Kalman 1960).

The K-B filter (Kalman and Bucy 1961; Ghil et al.
1979, 1981), which is the time-continuous counterpart
to Kalman's original scheme, uses the forecast model
itself to predict the background error statistics. The
goal of this method is to obtain the most accurate
analysis value for all time during the assimilation
period using only present and past observations. The
weight given to the current observations is inversely
proportional to their variance, and the accuracy of the
analysis is the sum of the accuracies of the forecast,
based on the past observations, and of the current
observations. The K-B filter minimizes the analysis
error variance not only at every time step, but over the
entire assimilation interval in which data are provided
(Ghil 1989). Through an application of Bayesian ideas
inadynamical sense (Kalman 1960; Lorenc 1986), the
filter is able to extract all useful information from the
observational increment/residual at each time step,
thus allowing obiservations to be discarded as soon as
they are assimilated. As a result, the method is se-
quential.

The K-B filter and the adjoint method are very
promising assimilation techniques. Both methods have
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been shown to produce improved assimilated states
for model forecast integration as compared to those
fromthe operational techniques. However, these “hext-
generation” data-assimilation methods are of limited
practicality at the present because of their complexity
and extensive computational requirements. There-
fore, operational implementation is still several years
away (Stauffer and Seaman 1990). However, Lorenc
(1988) has pursued approximations to the adjoint
technigue in a quest to make it operational in numeri-
cal weather prediction.

Most research has been directed toward the less
elegant but more practical methed of dynamic assimi-
lation, in which the numerical prediction model serves
as an integrator of observations distributed in time and
space. In this approach, which has become known
simply as “nudging” or Newtonian relaxation, the model
integration is interrupted periodically and the current
model state is updated with the new observations.
During the assimilation cycle, or preforecast integra-
tion period, the model variables are gradually driven,
or nudged, toward the observations by extra forcing
terms in the equations {Anthes 1974; Kistler 1974,
Hoke and Anthes 1976; Davies and Turner 1977). As
a result, the model fields are gradually corrected and
no further dynamic balancing through initialization is
required. The general form of the predictive equation
of variable Sis:

95 _Fs % 1)+ GW(S,~8). (5.1)

of
All of the model's physical forcing terms (Coriolis,
advection, etc.) are represented by F, where Sis a
model-dependent variable, S represents observa-
tions of S, ¥ is the independent spatial variable, and f
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is time. The second term on the right is the nudging
term, where G is the nudging constant (generally
102 to 10~ and W represents a four-dimensional
weighting function. The data to be nudged can be
either derived or measured, analyzed to a grid for
assimilation into the model, or inserted as individual
observations.

Thistechnique, which has been successful in bring-
ing the data and the model in harmony and providing
a relatively noise-free start for the forecast, has been
widely used on the giohal scale (Lyne et al. 1982,
Krishnamurti et al. 1988) and on the regional scale in
limited-area models (Anthes 1974; Hoke and Anthes
1977). Of late, several researchers have developed a
new interest in the technique (Stauffer et ai. 1985; Bell
1986; Ramamurthy and Carr 1987; Kao and Yamada
1988; Wang and Warner 1988; Kuo and Guo 1989;
Stauffer and Seaman 1987, 1990). Itis currently used
operationally at the UKMO for both globai (Lyne et al.
1982) and regional (Bell 1986) data assimilation.

The nudging technique mentioned above does
possess a few desirabie attributes; these were sum-
marized by N. L. Seaman (from his lecture notes
presented at the 1990 Summer Colloequium on Me-
soscale Data Assimilation, Boulder, Colorado): 1) The
assimilating model is complete, so irreversible pro-
cesses are included without difficulty. 2) Any data type
that can be represented as a tendency of a prognostic
variable can be assimilated. 3) Observation nudging
can easily assimilate asynoptic and single-level data.
4) Analysis nudging requires that the analyses be
performed only once prior to model integration; i.e., it
is economical. 5) Nudging does not require a separate
balancing/initialization step. 6) Nudging is conceptu-
ally and computationally simple.

On the other hand, this method has a few disadvan-
tages: 1) The nudging constant is generally assigned
in an application-dependent semiarbitrary manner. 2)
Qbservation nudging is based on “continuous analy-
sis” during model integration and can become
computationally expensive. 3} Analysis nudging is not
well suited for asynoptic data types. 4) Use of accurate
datain observation nudging may cause assimilation of
local or unrepresentative components (e.g., microscale
observations spread over a large area).

6. Comparisons of operational
assimilation techniques

Two papers fromthe recent literature (Ramamurihy
and Carr 1987; Kuo and Guo 1989) compared differ-
ent data-assimilation methods. Unlike the purpose of
the present paper, both of the aforementioned articles
advocated Newtonian nudging. The sole purpose
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here is to offer a short review of the available compara-
tive studies.

Ramamurthy and Carr {1987) studied the applica-
bility of several assimilation techniques currently be-
ing employed in operational models. A prime scientific
objective was to determine the “best” way to assimilate
asynoptic observations in limited-area models. A se-
quence of ten assimilation experiments were con-
ducted using different update procedures. In each
experiment, their limited-area model was initialized
with ECMWF FGGE level lll-b data, and then 12-h
assimilations were performed using level 1l-b data
from the 1979 Summer Monsoon Experiment
(SMONEX). Forecasts were then made from these
assimilated states. The first experiment served as the
control run, since no assimilation was performed.
Figure 6 is a schematic of the overall assimilation-
forecast strategy; four types of data assimilation were
compared: 1} In the static assimilation, the model was
updated only once at the end of the preforecast
(assimilation) period. An initialization step was then
taken to suppress the noise associated with the exter-
nal inertia—gravity mode; the internal modes were not
initialized. 2) The intermittent data-assimilation ex-
periment was similar to the static case, except the
mode! was updated twice during the assimilation pe-
riod. 3) Four experiments were conducted using con-
tinuous indirect data assimilation in which the model
was updated whenever new observations became
available. 4) Newtonian relaxation was used in the last
three experiments; the model state was nudged to-
ward analyses produced from the cbservations. The
reader should see Ramamurthy and Carr (1987} fora
detailed description of the experiments.

Comparisons among these differing technigues
were made by examining assimilated states (analyses
obtained at the end of the 12-h assimilation period).
Newtonian nudging produced better assimilated states
than did the continuous assimilations via indirect in-
sertion. Also, the continuous assimilation experiments
produced noisy assimilated fields due 1o insertion
shocks.

From each of the assimilated states, 24-h forecasts
were made and the results were compared against
each other and with the observations. The continuous
assimilation (via indirect insertion) continued to suffer
from the ill effects of the insertion shock. However, the
forecasts from the nudging experiments had a minimal
amount of noise.

The degree of spinup was examined in terms of the
development of precipitation. The excessive shocking
associated with continuous insertion was detrimental
to the spinup process and conseguently to the rainfall
predictions. The rotational nudging experiment (only
the rotational component of the wind was nudged)
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Fis. 6. A schematic of the assimilation-forecast cycle for various experiments (Ramamurthy and Carr 1987).

produced the most accurate rainfall predictions. The
lack of divergence-related shock in this approach
aided in the evolution of the physical processes.

The predicted tracks of the cyclone in the SMONEX
case study were compared. During the first 12 h
{assimilation period), the cycione’s movement was
erratic in all of the experiments due to the rapid mutual
adjustment between the mass and wind fields that
occurred in the early stages of integration. In the static
and intermittent assimilation experiments in which the
fields were replaced completely at the end of the
assimilation period, this problem extended into the
forecast stage for another 12 h. Overall, the nudging
experiments predicted more accurate tracks than the
other experiments.

In another comparative study, Kuo and Guo {1988)
examined different data-assimilation strategies. They
conducted a series of observing-system simulation
experiments (OSSEs) to test a Newtonian nudging
technigque for continuous assimilation of observations
from a hypothetical network of profilers. Twenty ex-
periments were described in their paper. Similar to the
work of Ramamurthy and Carr, they investigated static
initialization, intermittent assimilation, and Newtonian
nudging.

Comparisons of the three assimilation techniques
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were made by obtaining time series of wind and
temperature errors during the assimilation period.
With nudging, the errors decreased gradually during
the peried. The intermittent assimilation produced a
stepwise decrease in the errors and the results after
four assimilation cycles were considerably better than
in the static assimilation case. This reveals that inter-
mittent data assimilation was also effective in produc-
ing an improved initial state for the model forecast.

When considering model noise generated during
the preforecast period, a strong difference emerged
between continuous nudging and the intermittent as-
similation. In the nudging experiment, the model noise
gradually decreased during the assimilation period. In
contrast, the intermittent data assimilation produced
model noise with large spikes immediately after each
reanalysis of the wind field. However, this noise could
have been reduced substantially if a normal-mode
initiglization procedure had been incorporated.

The two papers reviewed above suggest that
Newtonian nudging is the best assimilation method
among those compared. However, the investigators’
findings may be scientifically inconclusive due to their
incomplete tests (notably, their failure to inciude an
effective nornmal-mode initialization procedure in the
intermittent data-assimilation experiments). Further-
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more, their comparisons were limited to operational
data-assimilation techniques. The next-generation
methods will produce more optimal assimilated states
forinitiating a numerical weather prediction model. But
as stated previously, these methods are still in the
developmental research stage and computationally
efficient versions are not currently available for opera-
tional use.

7.FDDA research: Implications
and the future

FDDA has been developed tremendously during
the past 15 years and is now an essential component
of numerical analysis and prediction systems in both
research and operations. The improving performance
of medium-range global and hemispheric prediction
and the rapid development of limited-area and me-
soscale models at centers suchas the NMC, ECMWF,
and UKMO clearly illustrate the practical benefits of
research in data assimilation.

The systernatic development of data-assimilation
methods has made possible the use of unconven-
tional and asynoptic observations from satellites, air-
craft, drifting buoys, and soon from wind profilers and
doppler radars. As a result, the accuracy of short-
range forecasts has significantly improved, although
only minor changes have occurred in the global ob-
serving system since the Global Weather Experiment
in 1979 {Bengtsson and Shukia 1988). According to
Lange and Hellsten (1986), the 3-day rms forecast
error for the Northern Hemisphere dropped by more
than 35% between 1972 and 1986. During the same
period, medium-range weather prediction has been
usefully extended in the time scale from 3—4 days to
about 7 days in the Northern Hemisphere and to 4
days in the Southern Hemisphere (Bengtsson 1985;
Bourke et al. 1985). The largest improvement has
occurred at middle and high latitudes of the Northern
Hemisphere. Weather prediction in the tropics has not
improved nearly as much, due to insufficient observa-
tions and deficiencies in the formulation of critical
physical processeas.

Lorenz {1982) addressed the limit of medium-range
predictability and concluded that it is possible to pre-
dict instantaneous weather patterns with better accu-
racy than guesswork nearly two weeks in advance.
Such extensions in predictability will depend on the
ability to improve current data-assimilation systems as
well as the numerical prediction models themselves.

Research is ongoing to find ways to improve data-
assimilation methods. A number of research centers
are investigating higher-resolution models, better nu-
merical technigues, improved physical parametet-
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izations, and improved models of auto- and cross-
correlation functions for prediction error. Another area
of interest is in specifying the diahatic heating at the
initial forecast time. A detailed specification is neces-
sary in order to correctly analyze and forecast the
divergent wind field over the trapics. A few universities
are making major strides in developing the next-
generation FDDA techniques and enhancing existing
methods. For example, adjoint methods are being
intensely investigated at the University of Oklahoma;
K-B filtering at McGill University, Montreal, Canada;
and Newtonian relaxation at the Pennsylvania State
University.

Several other critical research topics need attention
during the 1990s. They include: assimilation of mois-
ture processes (rainfall data and integrated liquid
water), lateral boundary conditions and mesoscale
predictability (predictive skill of limited-area models is
strongly controlled by the lateral boundary conditions),
assimilation of surface conditions/characteristics, and

RN
I B

During the next decade, FDDA will play a
role in solving or alleviating important
environmental issues such as air poliu-
tion and climate control (increasing CO,
and the ozone hole). Recent clean-air leg-
islation requiring the use of fow-sulfur
fuels and extremely expensive equipment
will make accurate numerical models of
atmospheric-chemistry transport and re-
moval more important than ever.

;

------ RERE i

quality contrel, which will continue to be a priority as
new data types are applied in FDDA. Data assimilation
is relatively new on the meso-alpha and sub-alpha
scales and needs considerable research with im-
proved datasets. Existing first-generation assimilation
systems must be improved to effectively forecast on
these small scales.

During the next decade, FDDA will play a role in
solving or alleviating important environmental issues
such as air pollution and climate control (increasing
CO, and the ozone hole). Recent clean-air legislation
requiring the use of low-sulfur fuels and extremely
expensive equipment will make accurate numerical
models of atmospheric-chemistry transport and re-
maoval more important than ever. FDDA canbe usedto
obtain accurate meteorological fields for input to com-
plex air-chemistry modeis. Bengtsson and Shukla
(1988) have suggested that a comprehensive analysis
of global observations based on an FDDA system with
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a realistic physical model should be used to produce
internally consistent, homogeneous datasets for the
earth's climate system. These global observaticns will
include many new environmental variables such as
external forcing variables, concentrations of radiatively
and chemically important rare species, and land sur-
face and oceanic variables. New remote-sensing sys-
tems such as EQS (Earth Observing System) will
monitor these variables.

With these environmental issues in mind, Daley
(1991) elaborated on a possible vision of the future of
data assimilation:

Firstly, data assimilation wid no longer be entirely or even
primarily concerned with short (or medium) range weather
forecasting. Secendly, the data base will become incredibly
diverse in both variables measured and type of ohserving
system. Thirdly, assimilating models will be much more
comprehensive, invalving ocean, land surface and strato-
spheric components. Finally, there will be considerably more
emphasis on the long term stability of algerithms to facilitate
climate change signal detection.

8. Summary

In this paper, an attempt has been made to offer a
review of four-dimensional data assimilation from a
historical perspective with emphasis on two of the
major components of data assimilation: objective analy-
sis andinitialization. Major objective analysis methods
were reviewed by McPherson (1976) and Gustavsson
(1981) and have been summarized hers. These in-
clude polynomial interpolation, successive correction,
optimal interpolation, spectral analysis, and varia-
tienal techniques. Several model-initialization meth-
ods have been highlighted; among these are static
initialization, nonlinear normal-mode initialization, ver-
tical-mede initialization, implicit normal-mode initial-
ization, dynamic initialization, Laplace transform,
bounded derivative technique, and the variational
method.

Several data-assimilation methods have been re-
viewed, including the two leading nexi-generation
FDDAtechnigues: the adjoint method and the Kalman—
Bucy filtering. Newtonian relaxation and the analysis—
forecast cycle (intermittent data assimilation) were
identified as the two major types of FDDA used today
in operational numerical weather prediction, and they
will likely be needed to meet the challenges imposed
by new observing systems at leastinto the mid-1990s.
These two methods, along with continuous assimila-
tion via indirect insertion and static assimitation, were
compared.

Finally, some important implications of FDDA re-
search have been given. FDDA has undoubtedly led to
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significant improvements in short- and medium-range
weather forecasting and may provide the much-needed
edge in coping with the pressing environmental issues
{air pollution and climate control) of the nineties.
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