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5 ABSTRACT

4

A fourth-order Crowley-type advection scheme based on the multistep Warming-Kutler-Lomax { WKL)

MO e

T T s 2

scheme is proposed in this study. This scheme utifizes a free parameter to minimize dispersion and dissipation
and can be used o represent the advection of positive-definite scalars (such as moisture ).

Linear Fourier component analyses indicate that the Sourth-order Crowley-type scheme can reproduce the
features of other modified Crowley-type schemes of third order, such as the scheme of Schlesinger and the
quadratic upstream interpolation. Using the free parameter, the scheme may liiustrate the limitation of the

Crowiey-type schemes for which diffusion is required for numerical stability of advective quantity. For these
schemes, formulations that preserve amplitude are inevitably associated with smaller time steps. Adding the
first cross-space term into these schemes could eliminate marginal instability or overshooting in linear advection.

Linear and nonlinear advection tests show that the performance of the proposed scheme is comparable to
the fourth-order leapfrog scheme (which requires more compuler memory) and the cubic upstream spline

{which requires more computer 1ime). This rwo-time-level advection scheme can thus be used in a numerical

model to save computer resources.

1. Introduction

The second-order Crowley advection scheme
{Crowley 1968) has been widely used in two-time-tevel
numerical models for many years (Smolarkiewicz
1982). Remarkable features of this scheme are well
known and have been discussed in previous papers
(Fromm 1969; Petschek and Libersky 1975; Smolar-
kiewicz 1982; Schiesinger 1985). Its main shortcoming
is the strong dispersion that leads to instability in long-
termn advection. Petschek and Libersky (1975) showed
that this scheme was theoretically unstable for two-
dimensional (2D) advection because the maximum
magnitude of its associated eigenvalues (the amplifi-
cation factor) is greater than unity. The time-splitting
Crowley scheme that represents each directional ad-
vection separately in time becomes stable for uniform
flow (Leith 1965). However, the scheme remains
weakly unstable in the case of deformational flow ( Pet-
schek and Libersky 1975). The modified second-order
Crowley schemes mentioned above still exhibit strong
dispersion (Smolarkiewicz 1982, Schlesinger 1985).

To reduce the strong dispersion associated with the
second-order Crowley Schemes mentioned above,
Schlesinger (1985) added an upstream-biased third-
order phase correction term that is based on the Tay-
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lor's expansions of the first spatial partial derivative.
This modified scheme was shown to preserve signifi-
cantly better phase but slightly worse amplitude com-
pared with those for the second-order Crowley schemes.
The quadratic upstream interpolation of third-order
accuracy (Leonard 1979) preserves amplitude better
than Schlesinger's scheme, since it does not retain the
second-order diffusion term of the latter. The upstream-
biased quadratic interpolation implies implicit diffu-
sion and may be considered as one of the Crowlev-
type schemes in which diffusion is required for advec-
tive stability. The diffusion is used to stabilize advection
in finite-difference forms that are forward in time and
centered in space { FTCS). Both Schlesinger’s scheme
and the quadratic upstream interpolation of third order
preserve phase much better than second-order Crowley
schemes. But, they still produce less accurate ampli-
tudes than the fourth-order leapfrog scheme, which s
a three-time-level formulation ( Haltiner and Williams
1980), and the cubic upstream spline, which requires
matrix computation ( Purnell 1976; Mahrer and Pielke
1978 ). This will be shown later in this paper.

One objective of this paper is to investigate the peT-
formance of different advection schemes in both linear
and nonlinear advection. To alleviate the major short-
coming of the second-order and third-order Crowley-
type schemes discussed above, we propose a fourth-
order Crowley-type scherne. We will show that the
performance of this scheme is comparable (0 the
fourth-order leapfrog scheme and the cubic upstrea™
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spline in both linear and nonlinear advection. Since
the finite-difference formulation of this Crowley-type
scheme is simple and involves two time levels; it can
save computer costs. In this study, the effects of cross-
space 1ErMs on the performance of the advection
«chemes are also investigaied. The first cross-space term
of second order has been shown to enhance the nu-
merical performance of the Crowley-type schemes
(Smolarkiewicz 1982; Schiesinger 1985). The cross-
space term of second order is a portion of the time
truncation error in multidimensional Crowley-type
schemes and is proportional to second-order mixed
spatial or ““cross” partial derivatives of the advected
quantity. Numerical results of linear advection in yni-
form and rotational flows are given in section 3. Linear
Fourier component analyses for the proposed scheme
are discussed in section 4. In addition to the theoretical
analyses, the reliability of the scheme in the simulation
of nonlinear mountain waves is examined using a
primitive equation numerical model.

2. Numerical schemes and other components

Linear advection of a scalar ¢ for 2D flow is governed
by
d¢ d¢

¢
CiuvZEivE=0 !
ot Uax ay ’ ()

where U/ and V are the wind components in the x and
y directions, respectively. In this study, the flow is as-
sumed to be nondivergent and steady. The advection
equation can be solved numerically at discrete grid
points, and computational stability is related to the
Courant number defined as

= (0!: + BZ)UZ, (2)

with the directional Courant numbers in the respective

X and y directions given by

_Uyht g Vit
Ax Ay

, (3)

o

where indices / and j denote a discrete grid in the re-
spective x and y directions, At is the time step, and Ax
and Ay are constant grid intervals,

a. Numerical schemes

We consider only the finite-difference advection
schemes that are commonly used in meteorological
nhumerical models. The advection schemes tesied in
this study are the following.

Lo the second-order and fourth-order leapfrog
schemes
L1 the firsi-order upstream scheme
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12 the quadratic upstream interpolation {Leonard
1979a,b)

L3 the cubic upstream spline

L4 the second-order upstream (upwind) scheme
{Warming and Beam 1975)

Ls the Crowley scheme or Lax-Wendroff scheme
{Crowley 1968: Lax and Wendroff 1960)

L5M the modified Crowley scheme { Anderson et al.
1984)

Lé the Crowley scheme with the third-order phase
correction {Schlesinger 1985)

L7 the Warming-Kutler-Lomax { WKL) scheme
(Warming et al. 1973)

L8 the modified WKL scheme (proposed)

L8M the modified WKL with selective control (pro-
posed)

Finite-difference forms for the schemes LO, L}, 1.2,
1.4, 15, and L7 can be found in Anderson et al. (1984).
The scheme L3 in which the time-splitting formulation
is used to simplify the 2D computation was discussed
by Pielke ( 1984). For L5M, the original second-order
Crowley scheme (or the Lax-Wendroff scheme} can
be modified simply by adding the negative of its third-
order differential term in its error-indication equation
(see Anderson et al. 1984) into the original scheme.
Thus, this scheme is third-order accurate. Scheme L6
is equivalent to Schlesinger’s scheme 4 with the type I
correction (an upstream-biased third-order phase cor-
rection ). This scheme remedies the dispersion caused
by the first-order term in LS. Scheme L5M is similar
to L6, but the third-order correction term is centered
and has different leading coefficients. Scheme L2 is
identical to the scheme L6 if the second-order term of
the latter is dropped. Note that L2 is not fully upstream
differenced since it involves one downstream grid point.

Scheme L7 (the WKL scheme) is a three-step
scheme. Its 1D formulation is given by

step 1. ¢] = ¢ = §G(¢'?+x - &)

]
step 2;07% = 3

2
[w’ + ¢l —3alel ~ ¢?‘_.)]
i
step 3: ¢;™" = ¢ = 7 A —2¢2 ¥ 774
3
= 71 + 2¢02) — 3 a(of — o1

— 57 (#Ta — 49T + 697

— 4]y + ¢i2), (4)

where w is a free parameter added for stability. Index
i refers to the grid point in the corresponding direction.
This scheme has the error-indication equation (see
Anderson et al. 1984) given by
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3
¢+ U = —M(‘i’—4a+a’)¢m
24 a
) .
+ QXY o4t 1507 — dat) b
120
+ O[(ax)*). (5)
This scheme 1s stable if
lal €1 and 4da’-a‘<w=<3, (6)

as shown by Anderson and Fattahi ( 1974). The scheme
has minimum dissipation with

w=w = 4a’ — a*, (7)

which causes the coefficient of the fourth-order deriv-
ative ¢, to vanish, and minimum dispersion with

_ (4a? + 1)(4 - a?)

5 *
which eliminates the fifth-order derivative. The scheme
thus is fourth-order accurate with least dissipation and
third-order accurate with least dispersion.

The original WKL scheme can be reduced to a one-
step scheme if the updated values of ¢ at step | and
step 2 in (4) are taken into step 3. The one-step WKL
scheme then has the final form

« = Wy

(8)

o = ¢ — % (—¢%h2 + 867 — 86", + ¢72)

o?
+ 3 (¢7s2 — 207 + ¢l-2)

3
+ ';'—2 (=l + 200 — 20011 + 672

~ 57 (Bl = 400 + 667 ~ 1) + 612).  (9)

The term involving o may be neglected without losing
accuracy since o’/ 12 is much smaller than other lead-
ing coefficients for values of a much less than unity.
It will be shown in section 4 that for 2D flow a must
be less than approximately 0.35 for the stability of the
scheme; however, one should probably retain the term
in o’ for 1D flow, although it would involve more
computation. Hence, a modified WKI. scheme (L8)
is proposed with a free parameter « ranging between

w; = 4a? (10)
and

w; = 0.8(4a’ + 1). (11)
Selective dispersion and dissipation controlied by this
free parameter become possible if

BT R SR ST S WA T T e
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¢" <0 (1)

Features discussed above form the basis of the proposed
scheme { L8M ) for positive definite scalars. Since neg.
ative values could be generated by numenical disper.
sion. these values must be reset to zero, in addition (o
the use of the scheme L8M. According to (12), heawy
damping with @ = w, is also applied 1o places where
zero values exist.

Anderson et al. (1984 ) have given detailed 1D sta.
bility analyses of LO, L1, L4, LS, and L7. Haltiner and
Williams ( 1980) also discussed stabilities of L0, L1,
and L5. Interested readers may refer to Leonard
{1979} for L2, Pielke { 1984) for L3, and Schlesinger
{ 1985) for L6. The 2D stability of the modified WK1,
scheme (L8 ) with the first cross-space term (given be-
low) will be investigated in section 4 using Founer
component analyses.

w=w,, for

w = w,, for

b. Other numerical components

Cross-space terms were usually neglected in weather
prediction models, probably because they were consid-
ered to have little effect on the performance of an ad-
vection scheme. Smolarkiewicz (1982 ) showed that the
first cross-space term of second order in the Taylor’s
expansion of the onginal Crowley scheme can increase
its stability range and therefore significantly improve
its long-termm performance. However, Schiesinger
{1985) found that the effects of the second-order cross-
space term in various flow advection tests are not &s
obvious. This contradiction indicates a need to further
examine the effects of cross-space terms on the perfor-

mance of an advection scheme. Since a lower-order

correction is more important than a higher-order cor-
rection, only the first cross-space term of second order,

Ccl;= %aﬁ(¢?+l.j+l =@~ @l F i)

(13)
will be examined. This first cross-space term has an
error of O[(Ax)?, (Ay)?].

To investigate the effect of a numerical smoother on
linear advection, we select the fourth-order Linear filter
proposed by Shapiro (1971 ). Waves of two grid inter-
vals will be completely eliminated at each time step by
applying this linear filter twice with a filter parameter
S = 0.125 the first time and § = —0.125 the second

time. The filier thus controls the aliasing errors in non-

linear advection and is the most widely used one in
meteorological numerical models.
A time smoothing is required for the leapfrog scheme

because of its three-time-level formulation that inevi-

tably generates splitting computational modes (Mes-
inger and Arakawa 1976). Robert’s (1966) time
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smoothing with a filter coefficient u is thus used to
reduce the splitting tendency of the solutions for the
leapfrog scheme. Haltiner and Williams ( 1980) have
discussed the detailed features of both the linear filter
and the time smoothing.

The lateral boundary condition used in this paper
is a radiation condition (Miller and Thorpe 1981),

" = @ — r{d — ¢51),
r=(¢f"'— o5 ) @5~ ¢2))' for O0=<r<],

where subscripts b, b1, and b2 indicate a boundary
grid point, and the first and second grid points adjacent
to the boundary, respectively. In addition, the upstream
scheme is used at the grid points adjacent to boundaries
for the modified WKL scheme and the cubic upstream
spline. It has been found that this approach enhances
the performance of the advection schemes near
boundaries.

3. Linear advection tests

In this study, uniform flow (UL) and rotational flow
(RL) were chosen 1o test advection schemes. Following
Long and Pepper (1976), the initial distribution of a

scalar ¢ in a cone-shaped hill as
R, ;
- 50[1 +cos(Li)], R, <4H
bi; = 4H (14)
0, R, > 4H,

was chosen with
Rij=[(x — %) + (35— 3)1'"? (15)

for a given peak at (x,, y,), and H is set to the grid
interval. Three-dimensional ( 3D) surface curves of the
two imposed hills in the uniform flow (UL} test are
plotted in Fig. 1. The wind velocity components U, ;
and ¥, ;are 5m s in the UL test, and

Iji.j = —(yj - ¥)9, Vi,j =(x; — x)2 (16)

in the RL test. The grid indices for the center of rotation
(x., y.) are (20, 20) with a constant angular velocity,
= 2x/10 800 s~ (i.e., 3 h for one revolution). Con-
stant grid intervals Ax = Ay = A are 5 km for both
tests, with an integration time step Ar of 60 s in the
UL test and 15 s in the RL test. In the RL test, the
maximum wind speed is about 82 m s~!, which may
occur in strong tornadoes or extreme hurricanes at the
surface and a strong upper-tropospheric jet streak. The
maximum directional Courant numbers o and § are
egual to (.06 in the UL test and 0.175 in the RL test.
Initially, the centers of the two hills in the UL test are
on grid points (14, 14) and (20, 20) and the center of
the hill in the RL test is on grid point (15, 15). The
uniform flow blows diagonally toward the grid poeint
(40, 40), while the rotational flow turns around the
central grid point {20, 20).

CHING-YUANG HUANG AND SETHU RAMAN
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F1G. L. The initial condition for the linear advection with uniform
flow. Gridpoint numbers (J, 7) range from (1, 1) to (40, 40). The
two hill peaks have the height of 100 units as reference. one peak
iocated at { 4, 14) and the other at (20, 20}. The viewing angles are
—45° for horizontal projection and 45° for vertical projection
(downward ), so the grid point (1, 1) is on the left edge of the iigure
and the grid point {40, 40) on the right edge of figure. Uniform grid
intervals with Ax = Ay = 5 km and Az = 60 s are used in this test,

The numerical results for the fourth-order leapfrog
scheme associated with the radiation boundary con-
dition are given in Fig. 2. To suppress the computa-
tional mode generated by the three-time-level formu-
lation, a time filter coefficient g of 0.05 was used. The
second-order leapfrog scheme yields significant disper-
sion of long waves, which leads to a maximum am-
plitude only about 80% of the initial value at 6 h (see
Fig. 3a for similar results). The fourth-order leapfrog
scheme preserves the maximum amplitude to approx-
imately 90% at 6 h and, in general, gives much better
phase accuracy than the second-order scheme. Some
shorter dispersive waves still appear near the hill and
far upstream for the fourth-order scheme because of
its computational mode { Haltiner and Williams 1980).
The upstream dispersive waves can be suppressed using
a larger filter coefficient 4.

The first-order upstream scheme is usually compared
with the second-order leapfrog scheme since both have
the same maximum Courant number for stability
{Piclke 1984). Strong dissipation associated with the
first-order upstream scheme (L1) results in an amph-
tude that is almost fully suppressed at 6 h (not shown)
in the UL test. The second-order upstream scheme (L4)
has moderate dissipation and dispersion (mainly for
leading phase error) and preserves only about 50% of
the initial maximum amplitude at 6 h (not shown).

The results at 3 h for the original Crowley scheme
{L5) and Schlesinger’s scheme (L&} are given in Fig.
3. Scheme L5 performs in a manner similar to the sec-
ond-order leapfrog scheme, with severely lagging phase
dispersion behind the hills. In contrast, little dispersion
is produced by L6 with the third-order phase correction.
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overshoot as the hills approach the corner of the dg:”
main. .

According to the results of the UL test, L0 is py
comparable to L3. In practice, L3 preserves phase ang
amplitude better than L0, although LO is a neutral
nondamping scheme (Haltiner and Williams 1980
Figure 5 shows the results for LO and L3 after one fyj)
rotation (3 h)in the RL test. In the RL test, L3 is better
than L0 in the preservation of phase, with only slight
dispersion near the hill, In amplitude, L3 gives a max.
imum value of 95% while it is about 85% for L0, No
overshooting is found for the scheme L3 in this test,
The other upstream-biased third-order scheme L2 pre.
serves slightly lower amplitude but better phase (ot
shown ) as compared to L0, similar 1o their performapce
in the UL test. Scheme L6 preserves a maximum are-
plitude of only 55% compared to 70% for L2.

The results in the UL and RL tests for the multiple-
step WKL scheme L7 (with the free parameter w = w,
for least dissipation } appear to be near identical to those

FG. 2. The results in the uniform flow test for the fourth-order
leapfrog scheme (LO)at(a)3 hand (b} 6 h.

In the UL test, L5 is stable, despite the fact that its

maximum eigenvalue exceeds unity (Fromm 1969,

Petschek and Libersky 1975). Although L6 preserves

phase much better than L3, this scheme preservesonly

60% of the amplitude at 6 h compared to 80% for L5, ¢

With the third-order correction based on the error-in-'

dication equation of the original Crowley scheme, L5SM b

preserves amplitude much better than L6 (not shown).

It has been found that the results for LSM were near 5

identical to those for L0, except for the upstream dis- . S

persive waves that appear in LO. 33
The results for the quadratic upstream interpolation o

{L2) and the cubic upstream spline (1.3) are shown in

Fig. 4. As can be seen, the two schemes preserve both

phase and amplitude well. Scheme L2 preserves 85%

amplitude at 6 h, comparable to the tesults of the

fourth-ordér leapfrog scheme (L0). Scheme L3 is a

global one (using all grid information) and thus gives

& maximum amplitude of more than 95%. The max- FIG. 3. Asin Fig. 2 but at 6 h for schemes (a) L5 and (b) L&

imum amplitude for L3, however, tends to slightly {for descriptions of the schemes see text).
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-

Lty at 3 hin

i

240 s), and L6 {with As
the UL test. Once the cross-space term is included, the

bit overshooting or instab

i

Before examining the long-term performance of the
120 s), L5M (with Ar

schemes, the effects of the first cross-space term should

360 s) exh

space term does not influence the performance of LEM

however, it will be shown later that without this term
its performance will degrade as more rotations progress.
be briefly shown. Without this term. schemes L2 (with

by the two schemes. For this short-term test, the cross-
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th marginal stability. However, this modi-

cation does not improve the results for a smaller
Courant number (e.g., with Ar less than 60 s}. The

regimes wi

fi

shown in Fig. 7. The cross-space term gives a wider

lity range and thus improves the resuits for flow
results are not sensitive to the cross-space term as long
as the time step is not close to the critical value that

three schemes become stable. An example for L6 is

stabi
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cross-space term will be further analyzed using Founier
components in section 4.

f

zero values and, thus, possibly acts to compensate. For
this case, L8M (with and without the cross-space term)

performs in a satisfactory manner as compared to a

positive

In fact, it was

ctive con-

is resetting
quantity.
regions o

found that all higher-order schemes L0, L5M, L7, and

. Thi
initi

Fig. 6. Note that for

in
ection at a new time step

tive values adjacent to the

on as evident

positive definite scalars, negative values are reset to

persi
posi

. 4. As in Fig. 2 but at 6 h for schemes (a) L2 and (b} L3.
de of

their dispersion. For positive definite scalars, the

even L8 preserve nearly identical amplitude for scalars
performance of L8M (with the cross-space term) is

for the one-step schemes L5M and LO

without positive definiteness, despite slight differences
better than other schemes because of the sele

tends to act as a source of the advective quantity. No
compensation through the reduction of other
According to the selective control {Eq. (12)] in LEM,
heavy damping is applied to grid points where zero
values exist. The heavy damping will also reduce the

values is made to better conserve the

trol of dis
zero after adv

magnitu

in

more complex scheme L3 (Fig. 6). As can be seen in

this figure, the o

ion flow test for schemes

rotati

m

the
(2) LO and (b) L3

.5. Theresultsat 3 h

al shapes are truthfully preserved

L
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positive-definite scalars, respectively. Dispersion for the
frog

scheme (L0} with weak smoothing suffers severe dis.
persion everywhere { degree F). This may be remedied

360 s and (b) as in {a) but including the cross-space

FiG, 7. The results at 3 h in the uniforﬁ flow test for (a) scheme

schemes are graded from degree A (best) to degree F
{worst). After four rotations, the fourth-order leap:

by applying the space filter or using a larger time coef
ficient according to Table I. Use of the linear filter is
thus necessary for LO to obtain slight dispersion near
the hill (degree B). The quadratic upstream interpo-.
lation (L2) is unstable in this long-term test, although
it is stable in the short term. The scheme becomes stable
once the cross-space term is included, indicating the
importance of this term in stabilizing numerical ad-
vection in the rotational flow. The cubic upstream
spline (L3) is also stable and preserves amplitude up
to 81% for the time-splitting formulation and 88% for
the nonsplitting formulation. The latter gives better
amplitude but significantly broadens the original hill
and produces moderate dispersion skirting boundaries

L6 using Af
term.
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{c) L&M, and (d) L8M with the cross-space term.

s

. 8. The results at 12 h (four full rotations) in the rotaiional fiow test for positive-definite scalars.
(a) LOwith p = 0.2, (b) L3
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With the cross-space term, the proposed scheme per-
forms comparably to the cubic upstream spline for the
rotational flow for somewhat shorter integrations.

4. Linear analyses and nonlinear tests of the modified
WKL scheme

As shown in the linear advection tests in the pre-
ceding section, the modified WKL scheme is more
comparable to the cubic upstream spline than other
schemes. Schlesinger’s proposed third-order Crowley
scheme preserves phase best, but the amplitude is con-
siderably suppressed. The scheme may be desirable in
simulations for which phase preservation is important

MONTHLY WEATHER REVIEW

{Schlesinger 1988 ). It will be shown in this section thay
the modified WKL scheme can reproduce the features

[N

of Crowley-type schemes of third order and can behave -

similar 10 Schlesinger’s scheme. By virtue of linear
analyses for dispersion and dissipation with different
w, it is also possible for the modified WKL scheme to
illustrate the limitation of Crowley-type schemes. The
features of linear analyses for this scheme and its per-
formance in nonlinear advection are investigated in
this section.

a. Linear analyses

The complete 2D modified WKL scheme including
the first cross-space term is given by

2
o' = @l — ’% (‘¢'f'+z,1 + 8¢ ;— 8¢+ ¢?-z.j) + %’ (Dl — @, + 0l 2))

-5 (—¢7 42+ 80701 — 8¢l + 7,20 + £
12 8
Qg " " n L n wp n n n n n

% (Ofi2,— 4074, + 67 ; — 411 ; + di-2) — 54 (@F o2 — 44T 41 +6¢7, 467, + ¢7 ;-2)

+

where the constant C, is unity or zero for the inclusion
or exclusion of the cross-space term, respectively, and
w, and w;, are the two free controlling parameters used

afC,

(@702 — &L+ @1 52)

4
O"
R -

L

TaBLE 1. The results after four full rotations for different schemes

in the rotational flow test. Characters in labels for each run: C, the
. . . . . cross-space term is used; P, positive-definite scalar is assumed. The -7
in the respective x and y directions. For the choice of g maximum amplitude is relative to the initial maximum b

VoLumg uij,_i'.

i3

(Pl — @i a1 — @l + d11-1)s (17)7-;3-

w, We use amplitude.
w, = 4a° and w, = 482, for minimum dissipation, )
Maximum
wy = 0.8(4a’ + 1) and w, = 0.8(48° + 1), , amplitude  Degroes of
Experiment (%) dispersion*
for minimum dispersion. (18)
. . ) LO (u = 0.05 63 F
A Fourier component of the solution for the finite- /Jj& = 0_25; 53 E
difference advection equation may be expressed as /L0 (a = 0.05; 5 = 0.125, —-0.125) 51 C
. . Y LO(u=0255=0125 —0.125) 43 B
¢7, = doexp[V—1(kiAx + [jAy + wnAt)] LOP (u = 0.20) 59 B
i . L2,L2C, L2CP 174, 59, 57 C
= ¢ exp[ V=1(kiAx + [jAWIG", (19) L3 (nonsplitting) 88 D
. ... . L3 {split 81 B
where ¢ is the initial amplitude, k and / are wavenum- u;m) 80 B*
bers in the x and y directions, respectively, and w is LS, L5C, L5CP 27,29, 40 F
frequency, and L5M, L5MC o**, 63 E
L5SMC (5 = 0.125, —0.125) 43 B
G = exp(V-1wAr), (20) 16, L6C, L6CP 32,31, 32 A
LSMP, LEMCP 67, 66 A

where (7 is a compiex constant termed the amplification

4“75‘"‘37"'!“?"".‘“"_*‘3‘5:&?”'& TR Y Akt

factor that indicates stability at each time step. For a
single component, a time integration of an advection
scalar is considered to be stable if |G| < 1 and unstable
otherwise. Separating the wave frequency and the am-
plification factor into real and imaginary parts,

* Degrees of dispersion are: A, almost dispersion-free everywhere;

B, slight dispersion near the hill; C, moderate dispersion near the ¥
hill; D, moderate dispersion near the hill and boundaries; E severe 8
dispersion near the hill; F, severe dispersion everywhere. g :

** The scheme L5M without the cross-space term bad such severe 3
instability that numerical overflow octurred before four full rotations. i
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w = + iwy,
we w;. (21)
G= GR + I.G,,
we obtain for this scheme
W, al  w,
Gg=1+ (—3—) cos(d,) + (-‘-‘-— 12) cos(20,)
wp B _w
+ ( 3)oos(6y)+ ( y 12)003(28,)
2 + 2 +
e X B sty se singdy)sin(d,),
4 4
_ e

G, = sin(4,) + % sin(26,)

3

- 2—‘9 sin{6,) + gsin(..?@y) (22)

 where 8, = kAx and 8, = /Ay. The absolute value of

G, the eigenvalue of Eq. (17}, is given by
A= (G + GA)Y'12, (23}

and the relative phase error is determined following
Schlesinger ( 1985) as

_ —tan "' (G;/ Gg) _

€y aﬂx-!-ﬂﬂy 1. (24)

Negative ( positive) values of ¢, indicate lagging (lead-
ing) phase error. Note that the minus sign associated
with the cross-space term in (22) indicates that this
term always increases numerical stability, since 0 < 8,
< x and 0 = 6, <  for all resolvable wavelengths. This
increase in stability reaches a maximum for 4A (AX
= Ay = A) waves. Thus, the cross-space term will sia-
bilize shorter waves in particular.

Figure 9 shows contour plots of A as functions of «
and $ for a given wavelength of nAx = nAy = nA and
w (the cross-space term has been included }, Contours
are plotted only for wavelengths of 6A (n = 6) and
10A (n = 10), since A for 2A wavelength is much
smaller than unity. The values of A for 4A wavelength
are also important for a numerical scheme, but the
contour plot for 6A wavelength was selected in order
to compare the results with those of Schlesinger ( 1985).
Using « = w,, this scheme has slight instability for
small Courant numbers. Instability is maximized at
the diagonal line (a = 8). Indeed, the maximum stable
diagonal Courant number is zero for w = w;. However,
the maximum stable value for each directional Courant
number is much larger, indicating the scheme to be
more favorable for 1D advection. The results are also
found in the original second-order Crowley scheme for
which 1D advection is stable with « less than unity but
2D advection is unstable with any permutation of e«
and £ according to linear analyses {Smolarkiewicz

CHING-YUANG HUANG AND SETHU RAMAN
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1982). With w = 2w, the maximum stable diagonal
Courant number increases for both 6A and 10A wave-
lengths. As w increases again (e.g., « = w;), the stability
increases further. For the amplification factor A, the
proposed scheme will essentially resemble Schlesinger’s
scheme { Fig. 1 in his paper) if w is chosen close t0 «,.
Using @ = w», this scheme has moderate dissipation
for low diagonal Courant numbers. In the UL test, the
performances of the quadratic upstream interpolation
and Schlesinger’s scheme are near eguivalent to that
of the proposed scheme with w = 3w; and w = w,.
respectively.

Figure 10 shows the contours of ¢, for 64 and 10A
wavelengths. It is seen that the phase errors for any of
the three options, v = w,, @ = 2w, and @ = w;, are
much smaller {only several percent ) than those (larger
than several tens of percent) for the original Crowley
scheme and the second-order leapfrog scheme (see
Haltiner and Williams 1980). For these two wave-
lengths (64 and 10A}, phase errors in the low Courant
number regime are 2% or less despite different values
of w. Since the scheme is fourth-order accurate only in
the case of w = w,, the features of the associated phase
erroy are particularly interesting, We see that there ex-
ists a curve of zero phase error for a Courant number
of approximately 0.41 for this case. Similar results also
appear in the case of w = 2w,, but the curve of zero
phase error is shifted to smaller Courant numbers. Both
the cases give lagging phase (negative ¢,) for lower
Courant numbers consistent with the linear test results
shown before. Surprisingly, a line of zero phase error
does not exist for low Courant numbers when w = w,
(but the phase error is still small ).

Figure 11 shows X and ¢, as functions of wavenum-
bersngivena=g8=0.1anda=£8=0.2. Ascan be
seen, there is almost no long-wave phase and amplitude
misrepresentation for the three options, w = w;, w
= 2w,, and w = w;. Slight short-wave instability is
found for @ = w, and no instability for the other two
cases. The case of w = w; for minimum dispersion
gives nearly the same magnitudes of dispersion as the
other tWo cases, but the short-wave phase error changes
from lagging to leading.

Although the minimum dispersion scheme (w = ws)
does not show better phase preservation than the min-
imum dissipation scheme {with w = w,), the phase
preservation of this scheme is actually better in tests
and is almost as free of dispersion { Fig. 10) as the first-
order upstream scheme discussed by Pielke (1984).
The Fourier component analyses of the upstream
scheme indicate the scheme to have strong dispersion.
A similar situation is also found in the leapfrog scheme,
which is theoretically neutral (i.e., dissipation-free). It
has been shown in the preceding section that both the
second-order and the fourth-order leapfrog schemes,
however, do not preserve all of the initial amplitudes
because of the associated dispersive errors. It is thus
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£y (Ly=Ly=8 ,w,=wy=0, ) £y (Ly=Ly=10, 0,20 =0, )
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Fici. 10. As in Fig. 9 except for the phase errors. Negative values represent lagging phases and positive values
leading phases. Coutour intervals are the sme as in Fig. 9. A factor of 100 for e, is used for all panels.
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= w, {solid kine), 2w, (dotted line), and w, (dashed line) in the modified WKL scheme {includin g the first cross-space term).

obvious that one single Fourier component cannot to-
tally describe the global features of an advection
scheme. Although both the initial and advective phases
of a scalar field are nondispersive, dispersive phase error
during numerical integration results in the misrepre-
sentation of the total amplitude despite the influence
of boundary conditions. Stight unstable modes (A> 1)
may be offset by other stable modes (A < 1} and am-
plification is thus slowed down or even eliminated.
With the option of w = w, for minimum dissipation,
the modified WKL scheme shows slight instability for
shorter waves for low Courant numbers. Figure 12a
shows the maximum diagonal Courant number {a = ff)
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for A < 1.01. (Due to the tolerance in global instability
as discussed above, A = 1.01 is arbitrarily chosen as a &
threshold of instability . ) The scheme using o = «, gives
relatively low maximum stable Courant numbers for
short waves {approximately 4A). On the other hand,
including the cross-space term greatly increases the
maximum stable Courant number for all wavelengths
except for 2A waves, as revealed by (22). With the
cross-space term, the schemes using w = 2« and w
= wy have almost the same maximum diagonal Cour-
ant number for A < 1.01, .

Figure 12b shows the maximum A for the range of §
2A-40A waves for a given diagonal Courant number 3§
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A (2A0-40A WAVE)

AMPLIFICATION (3Z)

(=]
S @
th

™r T v T
a 0. 10 0.20 ¢ 30 ¢ 40

COURANT NO.

FIG. 12. (a} Maximum diagonal Courant number {« = §)as a function of wavclength ( 4) for amplification factor < 1.01 in the modified
WKL scheme (including the first cross-space term). Specifications for the number symbols plotted in lines are: 1 for w,, 2 for 2w, and 3 for
w,; Character C following the rumber in lines indicates that the cross-space term is not included in that case. (b} Maximum amplification
factor (scaled by 100) as a function of diagona! Courant number (o = 8). The maximum value is determined numerically for wavelengths
between 2A and 40A. The symbols plotted glong the curves are the same as in (a).

(a = 8). It is obvious from this figure that the cross-
space term can decrease the slope of amplification fac-
tor and thus increase the Courant number at A = 1.
With the cross-space term, the scheme is absolutely
stable if the diagonal Courant number is less than 0.22
for @ = 2w, and less than 0.33 for @ = w:. Forw = w;,
the maximum stable Courant number is very small,
and it is almost zero if there is no tolerance allowed in
amplification. It is obvious that decreased dissipation
for the Crowley-type schemes tends to diminish the
maximum stable Courant number. Although higher-
order Crowley-type schemes give better phase accuracy,
the associated maximum stable Courant rumber will
be smaller than at second order. This result is also found
for the second-order and fourth-order leapfrog schemes
{Haltiner and Williams 1980).

It is difficult to determine the best vatue for the con-
trolling parameter w in the modified WKL scheme with
selective control (L8M) for nonlinear advection of
fields that are not positive definite. For example, dis-
persion of negative values cannot be avoided if these
values are not reset to zero. A similar problem aiso
exists in flux-corrected transport schemes (Boris and
Book 1976; Zalesak 1979) in which a hybrid form con-
sisting of a low-order and a high-order scheme is used
{the low-order scheme is applied for stronger diffusion).
A region that needs stronger diffusion will not be easy
to define except for positive definite scalars. Peyret and
Taylor {1983) thus argued that although the flux-cor-
rected transport method is simple in principle, there is
no clear “best” general approach for various flow

problems. The strong dependence on the characteristics
of the scalars (or flow) is the major disadvantage of
the modified WKL scheme when applied to advecting
fields without positive definiteness.

b. Nonlinear advection tests

It is desirable to test the modified WKL scheme in
2D and 3D nonlinear advection for its applicability to
weather forecast problems. The reliability of the scheme
in nonlinear advection will be examined using a hy-
drostatic and anelastic primitive eguation model
(Huang 1990) in a terrain-following coordinate system.
Shapiro’s linear filter is used to control numerical ai-
iasiog €rrors in the nonlinear simulation. Since w is
derived at uniform grid intervals for the modified WKL
scheme, it may not be appropriate 1o apply the scheme
for vertical advection in a stretched grid mesh used in
the nonlinear model. For both 2D and 3D simulations,
the scheme tested is thus applied only to the horizontal,
while the quadratic upstream interpolation is used in
the vertical.

The 2D nonlinear advection test is chosen such that
the exact wave phase and magnitude can be determined
theoretically for comparison. The simulation of 2D
hydrostatic mountain waves may satisfy the above
consideration since they have been extensively studied
numerically and theoretically by many investigators
(Smith 1979; Mahrer and Pietke 1978; Klemp and Lilly
1978; Klemp and Durran 1983). Considerable changes
are required in the model codes when the three-time-
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level leapfrog scheme is incorporated. Hence, only the
results given by the modified WKL scheme and the
other two-time-level schemes including the cubic up-
streamn spline will be directly compared.

A uniform windof U=20ms 'and V=0ms™'
and a constant vertical gradient of 4°C km™' for the
potential temperature are specified as the initial con-
ditions for use in ‘the 2D nonlinear flow test. In the
model, the potential temperature is a positive definite
scalar because no perturbation part is partitioned in
addition to the basic profile. A free-slip condition is
assumed for the wind at the lower boundary. The Co-
riclis force has been omitted in the simulation. The
horizontal and vertical grid intervals are Ax = 7.5 km
and Az = 500 m, respectively, with a time step Ar of
40 s. There are 30 and 25 grid points in the respective
x and z directions of the model domain in which a
bell-shaped mountain of 1-km height is specified at the
center (grid number 15 in the x direction ). Half-width
of the mountain is 15 km (two horizontal grid inter-
vals). A radiation upper boundary condition (Klemp
and Durran 1983) is used to determine the upper per-
turbation pressure. This radiation condition has been
shown to be important for correctly simulating moun-
tain waves and could be used instead of an absorbing
layer above the physical domain height (12 km in this
case). The mountain is included at the first time step.
This means that the mountain is lifted instantaneously
to the actual height once the model integration starts.
Although the initial fields are balanced, the solution
will not be hampered by the initialization as the flow
approaches a steady state.

Figure 13 shows the quasi-steady state results at 12
h for the quadratic upstream interpolation (L2}, the
cubic upstream spline (L3 ), the second-order Crowley
scheme (L5), and the modifiecd WKL scheme (L8)
with w = 2.5 w,. Dispersion due to advection would
not cause negative potential temperature because the
typical magnitude of the potential temperature is
around 300 K. Hence, selective control for LM would
not be invoked for this case. Note that the cross-space

term with respect to the x .and z directions was ngt-

included. As can be seen, mountain waves filt upstredm
and the maximum amplitudes of the waves are about
the same for all the schemes. The dominant nonlinear
mountain waves in the forced circulation are not at-
tenuated significantly for all the schemes even though
the linear filter is used. To obtain reasonable amplitudes
of nonlinear mountain waves, a second-order scheme
such as 15 seems to be sufficient (the wind disturbances
in fact are slightly stronger than those given by L3 and
L8). It can be found, however, that scheme L5 gives
a low-level perturbation center in the wind field about
one grid interval farther upstream than the higher-order
schemes, which appear 1o better preserve the upper-
level phase of the wind. The corresponding linear so-
lution (assuming small perturbation amplitude) indi-
cates that the low-level perturbation center of the

—
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buoyancy-dominant flow on this scale should be di- "
rectly above the mountaintop as was obtained by the ..,
three higher-order schemes (Smith 1979; Durran and J
Kiemp 1983). _
For all the higher-order schemes. the mountain -
waves show a trough at 5.5-6 km and a ridge at {1~ -
12 km as seen in the potential temperature field. The -
vertical wavelength is thus about 11-12 km, consistent
with the theoretical value (11.5 km) of 2xU/N where
N is the atmospheric stability frequency (Smith 1979),
Note that due to the nonlinear lower boundary con-
dition in association with the mountain of 1-km height, .
the vertical mountain wavelength estimated by the
perturbation centers in the wind field is slightly different .
from that by the potential temperature field.
Using w = w; for least dissipation, the modified WKL .-
scheme (L8) gives nearly the same maximum wind -~
speed and potential temperature field (not shown), but -
the upper-level wind field is slightly distorted as com- %
pared to that using @ = 2.5w,. The dispersion condi-
tions associated with least dissipation depend on the
chosen Courant number, as discussed before (see Fig.
10). For the nonlinear flow, the total phase dispersion
of all wave modes is complex. As a result, the use of
2w, € w =< 3w, is considered to be more appropriate
for general simulation. This choice will make the per- .
formance of the modified WKL scheme closer to that -
of the quadratic upstream interpolation, a compromise
between Schlesinger’s scheme and the oniginal Crowley
advection scheme. There is no best choice of w for -
obtaining both the best phase and the best amplitude
in the nonlinear case. The nonlinear simulations also :
show the limitation of the Crowley-type schemes for
which better amplitude preservation results in larger
dispersion. But, the dispersion given by fourth-order .
schemes is generally smaller than for second-order
schemes as seen in this test. The modified WKL scheme 3
without the use of least dissipation correctly simulates &
the mountain waves and is comparable to the cubic 3§
upstream spline for this case and the fourth-order leap-
frog scheme for similar conditions (Klemp and Durran %%
1983). g
Since the ultimate test for an advection scheme is
its 3D performance, 3D numerical experiments were’
also conducted using the same model. The terrain is ¥
bell-shaped and symmetric to the central grid of the %
lowest model layer. The model domain has 30 X 30 3
grid points in the horizontal. Initially, U, = V, = U &
=V = 10 m s where U, and V, are the east-west &
and north-south geostrophic wind components, re- &
spectively, and a constant vertical gradient of 4°C km™' ¥
up to 12-km height is specified for the potential tem- ‘3
perature. Turbulent transfers in the planetary boundary g8
layer are determined using a second-order closure 2
scheme in which two prognostic equations, one for JK
turbulent kinetic encrgy and the other for turbulent 3§
energy dissipation, are employed. A no-slip condition W
is used for the wind on the ground above which a neu- 3
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FiG, 13. The cast-west wind component (solid lines) and potential temperature { dashed lines) at 12 h in the 2D nonlinear mountain
wave simulation for (a) the quadratic upstream interpolation, (b) the cubic upstream spline, (c) the Crowley scheme, and (d) the
modified WKL scheme L8 with w = 2.5w, {see text for w, ). Contour intervals for U and ¢ in each panel are | ms~' and | K, respectively.

tral layer of 50-m thickness is assumed to keep the
boundary condition simple. In the 3D case, the cross-
space term related to the x and y directions is included
in the modified WKL scheme with the selective control
on dispersion for the positive-definite prognostic vari-
ables such as water vapor, cloud water, rainwater, tur-
bulent lanetic energy, and turbulent dissipation. For
other prognostic ficlds such as wind velocities and po-
tential temperature, w = 2.5w; (i.e., w, = 10a? and w,
= 082 in the 2D formulation). The total integration

time for the 3D case is 8 h, with a time step of 30's, A
description of the numerical model is given in detail
by Huang (1990).

Figure 14 shows the results for vertical velocity and
cloud water at a height of 250 m for the modified WKL
scheme and the cubic upstream spiine. Cloud water is
maximum at this height with the maximum loading
over the peak and a diluted cloud band downstream.
The downstream extension of the cloudy zone is caused
by the flow convergence downwind of the hill. It can
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F1G. 14. The results in the layer of 250-m height at 8h for the 3D fiow over an isolated hill of 1-km heighi (shorter dashed
contour lines with an interval of 100 m). Initially, relative humidity is 30% uniformly in the vertical and neo cloud water exists.
(a) cloud water g, for the nonsplitting cubic upstream spline, (b) as in {a) but for time-splitting form, (c) as in {a) but for the
modified WKL scheme, and (d) as in {¢) but for vertical velocity. Contour intervals for W and g, are 5 cm s~ and 0,03 gkg',

respectively.

be found that the configuration and maximum water
loading of the clouds {about 0.51-0.52 g kg ~*) for the
two schemes are approximately the same, although the
maximum vertical motions for the cubic upstream
spline are slightly larger than those for the modified
WKL scheme ( with the option of moderate dissipation
for non—positive-definite scalars). The 3D solution of
the flow with the cloud effects cannot be obtained
~without recourse to numerical simulation. As a result,
there is slight dispersion of cloud water upstream of
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-

T T T

NX (AX=7.5 KM)

the cloud core for both the splitting and nonsplitting 3 i
forms of the cubic upstream spline. This feature does 3
not appear in the results for the second-order Crowley £
scheme (not shown) and the modified WKL scheme,
This upstream dispersion of cloud water is not physi-
cally plausible. The modified WKL scheme therefore 3
appears to be more appropriate for the nonlinear ad- 3
vection of positive-definite scalars than the cubic up- &
stream spline at least for this case.

Table 2 gives an outline of some reference data, such 3
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TasLE 2. Comparisons of 3D results and the computer times for the schemes tested for nonlinear flow.

Experiment W Wean G {i, 7) CPU{h)
L3 (nonsplitting) 304 —59.2 0.512 {15, 1%5) 61.6
L3 (splitting) 294 -58.3 0.508 {15, 15) 61.6
LS 30.3 —52.9 0.612 (L5, 14) 433
L8M (w = w)) 307 —60.2 0.488 (15, 15) 449
LEM(w =25 w)) 212 -53.9 0.523 (15, 14) 44.6

Wy and Wy, are the maximum and minimum vertical velocities (cm s™'), mpecnvely, in the laver of 250-m height where cloud water

(g kg™") is maximum. The grid indices {J, j) indicate the location of the maximum ¢,. The CPU time also involves the computations of

cloud microphysics and subgrid turbulent transfer. The advection schemes were applied only in the horizontal, in combination with the
quadratic upstream interpolation in the vertical. All computations were accomplishad on the microcomputer VAX 3100,

as simulated system intensities and computer times for
the schemes tested in the 3D case. All the schemes
predict the same height (z = 250 m over the ground)
and nearly the same location for maximum cloud-water
loading. With the option of least dissipation (w = @, },
the modified WKL scheme ( L8M ) gives slightly stron-
ger vertical motions at a height of 250 m than those
obtained using w = 2.5w, and the cubic upstream spline
(L3), but the associated maximum cloud water is
smaller. On the other hand, the Crowley scheme (1.5)
yields neariy the same maximum upward motion ahead
of the hill, but the cloud water is considerably larger
(approximately 0.1 g kg~! more) than those given by
other schemes. The cloudy zones for all the schemes
are similar in distribution and width, however, the axis
of the cloudy zone shifts slightly to the southeast for
the WKL scheme with @ = w; and to the northwest
for the Crowley scheme (not shown )}, as compared to
the WKL scheme with w = 2.5«, and the cubic up-
strearn spline. It is interesting to note that the Crowley
scheme preserves phase and amplitude fairly well in
the 3D rather than 2D case. This is partly due to the
fact that the magnitude of the forced mountain waves
in the 3D flow is considerably smaller than that in the
2D flow. Another reason is that the structures resolved
by the second-order and higher-order schemes are more
similar at low levels than at higher levels. This was also
seen in the 2D case results.

Finally, computation time is a factor 10 be consid-
ered. In the 2D linear flow tests, computer time for the
cubic upstream spline is 2-3 times larger than that for
the modified WKL scheme. However, the total CPU
time in the 3D run (sec Table 2) using the cubic up-
stream spline is only modestly larger than those using
other schemes. This is because computations of tur-
bulent transfer and cioud microphysics are also time-
consuming. Use of the cubic upstream spline is thus
desirable in some simulations involving complex
physics.

5. Concluding remarks

In this study, we tested some finite-difference ad-
vection schemes commonly used in meteorological
numerical models and also examined the effects of the

associated numerical components such as numerical
smoothing and the cross-space terms. In light of the
poorer amplitude preservation of existing Crowley-type
advection schemes in comparison with the fourth-order
leapfrog scheme, we propose a fourth-order Crowley-
type scheme which is based on the muitistep Warming--
Kutler-Lomax (WKL) scheme. The modified WKL
scheme has the features of two-time levels and one-
step computation as in the original second-order
Crowley scheme.

One of the advantages of the proposed scheme over
other Crowley-type schemes is that it uses a free pa-
rameter to control dissipation and dispersion. Because
of its selective control on dispersion, the scheme is
suitable for the advection of positive-definite scalars
such as moisture. Besides, the schemie is shown to be
theoretically a generalization of third-order Crowley-
type schemes, because if the free parameter is suitably
adjusted the results can closely reproduce the beneficial
features of those schemes. There remains, however, a
significant limitation on the Crowley-type schemes for
which better amplitude preservauon would require a
smaller integration time step since diffusion is required
for numerical stability. Schemes with better phase ac-
curacy can use larger time steps, but they inevitably
preserve amplitude worse,

The results given by the modified WKL scheme in
lincar advectlon for scalars without definite positiveness
are identical to those of the fourth-order leapfrog
scheme with suitable time smoothing. For positive-def-
inite scalars, this scheme performs better than the
fourth-order leapfrog scheme because of the selective
control on dispersion, and it is more comparable to
the cubic upstream spline. Inclusion of the cross-space
term in the Crowley-type schemes helps stabilize the
long-term rotational fiow but does not improve the
results for time steps too small to cause overshooting
in the long run. Combination of a linear space filter
for a simpler amplitude-preserving scheme other than
the cubic upstream spline is necessary in order to obtain
reasonably correct phase in long-term rotational flow.

When applied to the simulation of 2D nonlinear
mountain waves, the modified WKL scheme yields
satisfactory results compared to those of the cubic up-
stream spline and mountain wave theory. For the sim-
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ulation of 3D flow over an isolated hill, the scheme
performs comparably to the cubic upstream spline, in-
dicating its reliability in representing multidimensional
advection. The proposed scheme can thus be used as
an option in a numerical model to save computer re-
sources because more computer memory is required
for the leapfrog scheme and more computer time 1§
required for the cubic upstream spline. The modified
WKL scheme has been used to simulate the 3D moist
flow over the Gulf Strearn region and steep mountains
in Taiwan (Huang 1990), and the results are encour-

‘aging.
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