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A Review and Comparative Evaluation of Multilevel Boundary
Layer Parameterizations for First-Order and Turbulent
Kinetic Energy Closure Schemes

TepDY HOLT AND SETHU RAMAN

Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh

Multilevel parameterizations of the atmospheric boundary layer using first-order and turbulent kinetic
energy (TKE) closure schemes are reviewed. Eleven schemes, chosen as representative of both first-order
and TKE closure, are then used for comparison in a one-dimensional barotropic planetary boundary
layer model. TKE closure schemes evaluated are the E-¢ schemes in which eddy viscosity K, is deter-
mined from turbulent kinetic energy and energy dissipation ¢ and the ! model schemes in which K is
determined from TKE and mixing length I. Comparison of model simulations of mean and turbulence
structure for first-order closure and TKE closure schemes to observational data (MONEX79) is given.
The two main conclusions drawn from this comparison are that (1) the mean structure of the boundary
layer is fairly insensitive to the type of closure scheme, given that the scheme properly accounts for
turbulent boundary layer mixing, and (2) TKE closure is preferable to first-order closure in predicting the
overall turbulence structure of the boundary layer. Among the TKE schemes compared in this paper, the
modified Detering and Etling (1985) scheme is preferred.

1.

Much has been written in recent years concerning modeling
and parameterizations of the planetary boundary layer (PBL),
particularly in review works [e.g., Blackadar, 1979; McBean et
al., 1979; Wyngaard, 1982; Panofsky and Dutton, 1984]). How-
ever, little has been resolved in terms of development of im-
proved parameterizations or the direction and future progress
of PBL parameterization schemes as they relate to numerical
weather prediction. The effects of the boundary layer can be
incorporated into a large-scale model in two ways, as first
discussed by Clark [1970] and Deardorff [1972]). One way is
to parameterize the entire PBL as one layer. This involves
identifying and relating unresolvable processes in the PBL
with resolvable ones. The complexity of this single-layer PBL
parameterization lies in the variety and interdependence of
atmospheric processes acting on different scales. The second
approach, and the one discussed in this paper, is to include
several computational levels in the PBL in order to resolve the
boundary layer structure effectively and explicitly. Such multi-
level PBL formulations require turbulent fluxes of momentum,
heat, and moisture at several levels within the PBL. Thus they
require some type of closure scheme to relate turbulent fluxes
to mean quantities.

Basic closure schemes are presently limited to first, 14 (or
turbulent kinetic energy), second, and to a lesser extent, third
order. Second- and third-order schemes involve more of the
physics of the boundary layer through increased formulation
and numerical complexity. The intent here is to concentrate
only on multilevel PBL parameterizations as they pertain to
first-order and turbulent kinetic energy (TKE) closure. First-
order closure is well documented, but there has not been a
good review of TKE closure. In section 2 we present a review
of past work on various multilevel parameterizations. Repre-
sentative parameterizations of the first-order and TKE closure
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schemes are then selected for comparison using a one-
dimensional model.

Observational data of the mean and turbulent structure of
the marine boundary layer will be compared to model results
in section 3. The data set used is from the Monsoon Experi-
ment (MONEX?79). It represents a unique opportunity to
study turbulent structure of a marine boundary layer in a
region in which relatively weak sca surface temperature gradi-
ents existed. The baroclinicity of the region and the effects of
the barotropic assumption in the one-dimensional (1-D) model
are important and will also be considered in section 3.

2. REeviEw oF CLOSURE SCHEMES

2.1.

The closure problem arises from representing the total tur-
bulent flow in the atmosphere in terms of the mean flow. The
fundamental concern is not to introduce more unknowns into
the equations describing the atmosphere such that the number
of unknowns exceeds the number of equations. The principle
behind the simplest way of closing the system of equations,
first-order closure, as originally proposed by Boussinesq
[1877), is to model turbulent transfer as molecular transport
as follows:

First-Order Closure

—(uw, vw) = K, (0U/oz, oV /ez)
—(w) = K,(08/0z)
—(wg) = K (0Q/92)

where uw, tw, w, and wq represent vertical turbulent fluxes
and K, K,, and K_ are eddy viscosity coefficients of momen-
tum, heat, and moisture, respectively. This is the fundamental
premise of first-order closure, that these unknowns, turbulent
fluxes uw, vw, etc. (for first-order closure) are related to mean
vertical gradients by an eddy viscosity coeflicient K which is a

8)

" property of the turbulent flow. It is this eddy viscosity coef-
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ficient which must account for the complexities of turbulence.
The problem of first-order closure is then effectively reduced
to the problem of resolving K, and this is the problem ad-
dressed here.
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TABLE 1. K Profiles
Range of
Author K Profile Validity Constants
O’Brien [1970) K,, = K(h) + [(z - hh — 2,)’{K(z,) — K(h) all Ri
+ (z — z)[6K/az, + [2(K(z,) — K(h)Ith — 21} 2z, <z<h
Yamamoto et al. K,, = I22[S + (g/6186/3z1)'%] 86/6z < 0 = [(8U/3z2)* + (8V/az)3)
[1973) K, = KZS — (L/2z)(0g/8 a6/62)"?) oz > 0 o=15
Orlanski et al. [1974] K, = Kyl + C(—gA&Az)*/0Kyvp)' "] A6<0 K, = 0.0093 m* s~}
K, =K, A8=0 C=0.1;
Az is local vertical grid
size;
A# s local @ difference
v = 0.0093 m> s’
Businger and Arya K,, = kzu, exp (—fz! Vxlu.z)/(l + BzZ/L) stable B=4.7
[1974] ;
Pielke and Mahrer = K(h) + [(z — hY¥(h — z)PP{{K(z,) — K(h)] z,<z<h
[1975] + (z = z)[0K/dz, + (AK(z,) — K(W)(h — z )]}
m = K(h) z>h
K,, = (2/h)K(z,) z<z
Brost and Wyngaard K, = kzu,(1 — z/hY**(1 + Bz/IL)™' stable B=4.7
[1978)

For completeness we include simplified equations of the
one-dimensional PBL, neglecting horizontal advection terms
and considering only vertical turbulent exchange:

1 0P
__fV____)____
p Ox
av 16P
E+fU=——(DW)—;a—y )
00 0 — aQ Jd
a- " um" F=xz™

where uppercase values U, V, ©, and Q represent mean values
of east-west and north-south wind, potential temperature, and
humidity, respectively. Lowercase values denote deviations
from the mean. Incorporating the eddy viscosity concept (1)
along with geostrophic winds (U, V,) yields a set of more
easily modeled equations:

ou [ ou
— - - V,)=—(K —)

ot oz\' " oz
v 0 ov
'a;"*'f(U— U,)=5;(K.. E) 3)

©_20 80 Q @ 20
o oz (K z) o oz (K' az)

where K_ is assumed equal to K,.

Modeling of the lowest 100 m of the atmosphere is best
accomplished by making use of surface layer theory. Effective
and efficient parameterization schemes based on Monin-
Obukhov similarity are widely used for the surface layer (see,
for example, Panofsky and Dutton [1984], Pielke [1984], and
Arya [1977)) and will not be expounded upon here. Instead
we focus only on the buik of the boundary layer away from
the surface. It is this region in which nonstationarity and inho-
mogeneity often dominate that is most difficult to model. In
this region, first-order closure schemes can be divided into two
groups: one in which mixing length (/) parameterizations are
used to determine K and one in which mixing length is not
used. We first consider those parameterizations which do not
utilize the mixing length approach but mstead describe 2 K
profile.

2.1.1. K profile approach. The simplest and oldest ap-
proach to first-order closure is to specify a K profile in which
K is a constant. These constant K models are easily solved
analytically [Ekman, 1905], but physically they are not well
representative of the boundary layer as could be expected
from their simplicity [Krishna, 1980]. A more physically real-
istic approach is to prescribe a K profile which varies with
height. Thus K is allowed to depend on height, thermal stabil-
ity, local gradients of potential temperature, etc. Numerous
authors including O'Brien [1970], Yamamoto et al. [1973],
Businger and Arya [1974], Orlanski et al. [1974], Pielke and
Mabhrer [1975), Deardorff [1975], Brost and Wyngaard [1978],
and Bodin [1980] have considered this approach to study a
variety of atmospheric conditions.

In the steady, horizontally homogeneous stable boundary'
layer, Brost and Wyngaard [1978] parameterized K based on
surface layer and mixed layer scaling, while Businger and Arya
[1974] used a scheme in which K adjusts asymptotically
throughout the boundary layer (see Table 1 for a description
of K profile schemes). For more general atmospheric con-
ditions, O’Brien [1970] suggested a scheme, still used by some
[see Tapp and White, 1976], in which K is obtained from a
third-order polynomial determined by specified boundary con-
ditions at the top of the boundary layer (k) and at the top of
the surface layer (z,). '

Others have used schemes which utilized different subgrid
scale parameterizations, such as that given by Deardorff’
[1974]). Orlanski et al. [1974] used a simplified two-
dimensional (2-D) version of Deardorfi’s [1974] three-
dimensional (3-D) numerical model and specified K pro-
portional only to local vertical gradients of potential temper-
ature. Deardorff’ [1975] used a similar approach but with K
proportional to the local turbulent energy. Yamamoto et al.
[1973] assumed K proportional to both vertical wind shear
and vertical gradients of potential temperature. Pielke and
Mahrer [1975] combined O’Brien’s [1970] formulation with
Deardorfl’’s [1974] prognostic equation for PBL hclght hto

* better resolve boundary layer growth.

All of these first-order schemes are relatively simple in that
they require only routinely measured or model resolvable
meteorological variables to explicitly determine K. Thus K
profiles are specifically determined by parameters such as
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8@/2z, z/L, z/h, etc., where L is Monin-Obukhov length. This
is a drawback in that these parameters are often not good
indicators of the total turbulent flow. A slightly different ap-
proach to this type of determination of K is an approach in
which K is expressed in terms of a mixing length J, such that

= P[(eU/¢z)* + (0V/8z)?]2 4)

and one must determine [ instead of K. This mixing lcngth
approach will now be considered.

2.1.2. Mixing length approach. The principle of a mixing
length in terms of atmospheric turbulence dates back to the
work of Prandtl [1932]. He reasoned, from considerations of
eddy transfer, that in the surface layer, eddies move vertically
at velocity w and over a distance ! (or mixing length) in the
process of adjusting their momentum to that of the sur-
rounding fluid. Blackadar [1962], extending Prandtl’s mixing
length hypothesis, reasoned that / varied as kz close to the
ground (where k is von Karman’s constant) but approached
some constant value 4 at greater heights, i.e.,

I'=kz/(1 + kz/4) (5)

Blackadar suggested 4 equal to 2.7 x 1074/ G|/] f] where G is
the geostrophic wind and f is the Coriolis parameter. Others
have used Blackadar’s parameterization, or slight modifi-
cations of it, in their own schemes for determining K (see
Table 2). For example, Carison and Foster [1986] used an
eddy viscosity turbulence model in a 2-D simulation of unsta-
ble boundary layer flow over valleys in which mixing length
was Blackadar’s formulation modified to include stability ef-
fects. Earlier works [Karisson, 1972; Clarke, 1974; Estoque
and Bhumralkar, 1970] used Blackadar’s parameterization
with modifications included in K profiles to account for stabil-
ity (Table 2). Djolov [1973] utilized a modified Blackadar for-
mulation by including the stability function ¢,,:

I = kz/($,, + kz/4) ©

where /=40 x 104 G|/| f]| and ¢,, is determined by the
usual Businger-Dyer relationships. Delage [1974] used a local
Monin-Obukhov length approach and Bodin [1976] a “neu-
tral” mixing length approach modified by the depth of the
boundary layer to extend Djolov’s work to the stable bound-
ary layer. Lacser and Arya [1986) summarized many of these
works and provided a review of mixing length parame-
terizations in the stably stratified nocturnal boundary layer.

Other parameterizations of mixing length [/ exist. For simu-
lating a horizontally homogeneous stratus-filled boundary
layer, Tag and Payne [1987] used a 3-D PBL model that
incorporated the mixing length parameterization first pro-
posed by Rossby and Montgomery [1935]. In this scheme, I is
separated into a region within the surface layer and a region
above it. Mixing length is then a function of distance from the
surface, as well as stability, in both regions. A scheme devel-
oped to account for stability similar to that of earlier authors
[Estoque and Bhumralkar, 1970; Karlsson, 1972] is a modified
Djolov [1973] scheme. In this scheme, ! is a function of ¢, as
earlier, but now K, is also a function of Richardson number
(see Table 2).

2.2. Turbulent Kinetic Energy Closure

An improvement to the simplicity of first-order closure
would be a closure scheme in which more of the physics of the
atmosphere is taken into account in the formulation of the
eddy viscosity coefficient K. Such a scheme is the turbulent

kinetic energy closure. It is essentially a first-order scheme in
that closure is accomplished by means of (1), but the K coef-
ficient is determined from more involved and hopefully more
physically realistic relationships given by prognostic equations
for turbulent kinetic energy and energy dissipation or mixing
length. This type of closure is also more economical as com-
pared to higher-order closure schemes. For example, second-
order closure requires the integration of at least 15 partial
differential equations when moisture is included. Simple first-
order closure generally requires only the four equations given
in (3). TKE closure requires only two additional equations, a
total of six, and thus provide a more physically realistic solu-
tion to the closure problem than does first-order closure, with-
out the involved numerical complexity of second-order clo-
sure. Thus it is often termed 14-order closure [Mellor and
Yamada, 1974)].

The foundation of TKE closure is the budget of turbulent
kinetic energy. It is essentially a first-order closure scheme, so
it does involve the same parameterization of K given in sec-
tion 2.1. Here we also consider the same basic equations for
the description of the atmosphere as in section 2.1 for consist-
ency. However, an additional equation is introduced which
computes the turbulent kinetic energy budget in the boundary
layer. For turbulent kinetic energy E expressed as (17 + 07
+ w2)/2, the prognostic equation for TKE over a horizontally
homogeneous surface is derived as (see, for example, Monin
and Yaglom [1971])

6E  _ 48U av o [(— pw
—= —w——w—+—=wb—— (wE + | — 7
ot M T Te” 62<w +p) ¢ @

where the first two terms on the right-hand side (r.hs.) repre-
sent shear production, the third term represents buoyancy
production, the fourth turbulent transport, and the fifth dissi-
pation of turbulent energy. In this closure scheme, several
terms on the r.h.s. must be parameterized. The shear terms, of
course, are related to mean gradients by (1). Similarly, heat
flux wh in the buoyancy term is generally expressed as

— Wl = K,(00/0z — y,,) = K,(0@,,/5z) ®

where 7., (=7.0 x 10”* K/m) incorporates countergradient
heat flux [Deardorff, 1966]. The turbulent transport term is
composed of vertical turbulent transport /6z (wE) and pres-
sure transport 8/8z (pw/p). The two terms are generally includ-
ed as one and modeled as [Monin and Yaglom, 1971; Shir,
1973; Rodi, 1980]

— (WE + pw/p) = C(K,, OE/0z) ®

where C is a constant. Substitution of these parameterizations
into (7) yields

OE U\ (V\T] . g . 9O,
az‘K"[(az) (a:)]*é'(* pe

) OE
+c$(1<,,52-)-s (10)

Parameterization of the final term, energy dissipation ¢, can be
achieved either diagnostically or prognostically and will be
considered in the following sections.

To organize and to clarify the different TKE "closure
schemes, we now separate them into three basic model
schemes based on the prognostic variables considered. Basic
equations, assumptions, and recent work on each parame-
terization will then be evaluated.
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TURBULENT KINETIC ENERGY (TKE) CLOSURE

ke, LE%

DIAGNOSTIC 2

L
E

PROGNOSTIC
4

v, 9
Oz+y

-vw

n]-c‘

[

ot

2
+C°a—!

(k&)

€ 2)C, J.[-w;ﬂ,-w ;5]-c,s‘: [|+c.(f; )']

Fig. 1. Model parameterizations based on turbulent kinetic energy closure.

The first TKE parameterization considered is the “/ model,”
in which mixing length ! is modeled either diagnostically or
prognostically. The second is the “E-¢ model,” in which a
prognostic equation for ¢ is developed. The final approach
considered is the “E-l model,” in which a prognostic equation
for the product E - | is used. This scheme is often referred to as
g*-1 closure (or a level 2.5 model), where (g/2) is the TKE
[Melior and Yamada, 1974] (see Figure 1).

2.2.1. The | model. The basis of the | model is derived
from the Prandtl-Kolmogorov hypothesis [see Monin and
Yaglom, 1971] relating eddy viscosity to turbulent kinetic
energy:

K, = C,IE'? (11)

Constant C, is taken as 0.4. With turbulent energy E evalu-
ated by a prognostic equation (7), the determination of K is
again, as in the mixing length approach, determined by .. Re-
search in [ models has been divided into prognostic versus
diagnostic determination of the mixing length.

22.1.1. Diagnostic determination of I: A diagnostic deter-
mination of [ by simple means was given in section 2.1.2 for
mixing length parameterization schemes such as Blackadar’s
[1962] (Table 2). However, recent work has sought to develop
diagnostic relationships for I to be utilized in TKE closure
schemes which incorporate more of the complexities of atmo-
spheric flow. Duynkerke and Driedonks [1987] distinguish
three different length scales and use an interpolation between
the three as the diagnostic length scale. In the surface layer the
length scale I, is obtained from the modified Blackadar formu-
lation (6) proposed by Djolov [1973]. The limiting value 4 in
that formulation is the second length scale. It is used in scaling
the bulk of the boundary layer [ Mellor and Yamada, 1974]:

. N
I'E‘/zz dz

0

h
L EYV? 4z

The third length scale (1) is that for the stable layer, where
L=CE"N,

A=C_ Cp =025 (12)

(13)

and C, =036 and N, is the Brunt-Viisili frequency. The
mixing length ultimately used by Duynkerke and Driedonks
[1987] is given as

I = Min (I, 1) (14)

Beljaars et al. [1987] used a simple mixing length closure in
a spectral finite difference model to simulate neutral surface
layer flow over complex terrain. They prescribed ! in their
TKE closure scheme as

= k(z + 20) (15)

where z, is the roughness length for undisturbed flow. They
concluded that such a simple mixing length parameterization
was not valid in attempting to simulate turbulent flow under
inhomogeneous conditions. Therry and Lacarrere [1983] pre-
scribed an expression for ! in terms of altitude and stratifi-
cation based on the third-order closure scheme of Andre et al.
[1978] as well as experimental data in convective conditions:

1_1,CLKt (1 CLK2) —  CLKS 16
I kz' h kz' h 1 i

where CLK1, CLK2, and CLKS5 are constants and I, is the
mixing length for stable conditions (see Table 3). Russell and
Takle [1985] used a modification of Therry and Lacarrere’s
[1983] formulation for ! in the evolution of the stable bound-
ary layer:

1
YA =z

—

1 1
ot L a7

The parameterization of energy dissipation ¢ in the TKE
budget plays an important role in the determination of mixing
length. If one chooses to use a diagnostic determination of I as
illustrated here (Table 3), then ¢ in the TKE budget (7) is an
unknown and must be modeled. The problem is circumvented
by using the generally accepted relationship of Koilmogorov
[1942]:

e=C,EYl, {18)
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1_1 CLEIL (1
I, kz h kz

Lacarrere, 1983].

lationship.

constant at any given time (1):

where

lc=’l

I= (1 + % wo 1,/0,53“)1,

2.2.1.2. Prognostic determination of I:
proach in the / model to determining mixing length by diag-
nostic formulation is to allow ! to be time dependent. Such a
prognostic equation of mixing length was first formulated by
Shir [1973] and Lewellen and Teske [1973] for second-order
modeling. Busch et al. [1976] extended the prognostic concept
to a simple PBL model. Similarity theory is used in the surface
layer, but above the surface layer, Busch et al. [1976] reasoned
that the evolution of mixing length should depend on two
parameters: (1) the strength of boundary layer mixing
(characterized by friction velocity u, and convective velocity
w,) and (2) the difference between actual mixing length ! and
the value of the mixing length for boundary conditions kept

a_ -
o [fu? +w, 2]

I, = (kz/¢ X1 — z/h)
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where |, is termed the dissipation mixing length. Therefore if
one chooses to use a prognostic equation for mixing length, ¢
is no longer an unknown and need not be modeled.

Implementing (18) into the TKE budget raises an interesting
question. Examination of (11) and (18) indicates separate
length scales for eddy mixing and dissipation. There has been
much discussion concerning the relationship between these
mixing lengths [see Therry and Lacarrere, 1983; Detering and
Etling, 1985]. Which length scale should be used, and what is
the relationship between the two? The common assumption is
that the length scales | and I, are equal. Therry and Lacarrere
[1983] examined several formulations of I, and compared
them to experimental observations from the Air Mass Trans-
formation Experiment (AMTEX) as well as model and labora-
tory simulations. They considered the well-known formulation
of Blackadar [1962] as well as formulations by Yu [1976] and
Bodin [1979] and concluded that none of the formulations
account for the wide range of stability encountered in the
atmosphere. Instead they proposed an expression for /, which
agreed better with experimental results:

19)

where CLE1, CLE2, and CLES are constants and I, is the
mixing length for stable conditions. We include in Table 3
formulations for both / and I,. Using a simplified rate equation
for w? to obtain an explicit relationship for w?/E, Therry and
Lacarrere [1983] derived a relationship between ! and I,:

(20)

Thus, for convective conditions, ! is larger than [, [ Therry and

The range of application using a diagnostic determination
of I emphasizes the importance of properly specifying mixing
length. However, it is easy to see that many of these parame-
terizations are dependent on atmospheric stability conditions
and are not applicable for a wide variety of cases. This, of
course, is a drawback in the formulation of a diagnostic re-

An alternative ap-

@n

22)
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TABLE 4. The E-¢ Model

Constants
Author C, (o Cs Cs
Duynkerke and Driedonks [1987] 0.09 1.44 1.92 077
Beljaars et al. [1987] 0.032 1.44 1.92 0.54
Stubley and Rooney [1986] 0.09 1.44 1.92  0.77
Detering and Eiling [1985] 0.026 1.13 1.9 0.77 .
Modified Detering and Etling 0.026 1.90 0.77
[1985]
Marchuk et al. [1977] 0.08 1.38 1.40 1.0

For the modified Detering and Etling [1985] model C, is 1.13l/h.

and k' is the height at which [, equals the residual mixing
length I (K is taken as roughly h).

Mailhot and Benoit [1982] used the Busch et al. [1976]
parameterization in a 1-D finite element model but deter-
mined I, from Blackadar [1962] and J. W. Deardorff (unpub-
lished manuscript, 1977) formulae for stable and unstable
boundary layers, respectively:

I, = h{0.35/(1 + 2.50)] stable

(23)

I, = h0.35{ + 5.172 — 5.35(3) unstable

where { = min (z/h, 1).

There exist relatively few prognostic relationships for
mixing length used in TKE closure schemes because the prog-
nostic equation for [ is better expressed as a prognostic equa-
tion for energy dissipation & An equation for ¢ is more
common because the concept of energy dissipation is easier to
grasp than that of a mixing length. In addition, using the
dissipation equation as an additional prognostic equation
climinates the need for parameterizing ¢ in the TKE budget.
This type of formulation is referred to as an E-¢ model and
will be considered next.

2.2.2. E-e model. The concept of using a prognostic equa-
tion for energy dissipation ¢ instead of a length scale formu-
lation in the turbulent kinetic energy budget was first pro-
posed among others by Harlow and Nakayam [1967], Daly
and Harlow [1970), and Hanjalic and Launder [1972] for fluid
engineering applications. The relationship for eddy viscosity in
terms of ¢ can be derived easily from (11) and (18):

K, = C,E%e 4

Therefore calculating ¢ by means of a prognostic equation is
analogous to using a prognostic equation for I. The derivation
of the dissipation equation from the equation of motion is
quite involved and will not be considered here (sce Lumley
[1980], Marchuk et al. [1977), or Wyngaard [1975)). Several
approximations and parameterizations must be made to
obtain the resulting popular form of the simplified equation
used in the E-¢ model:

d¢ € —_Uu _oV g —

— pa— — — — P — 0
P C’E[ " oz -”waz+9w]

[+

) 2l e\
—Coz+C (K,, ‘) @5)

saz\ "oz

where the first term on the r.h.s. represents the generation of e.
For modeling purposes the bracketed portion of this gener-
ation term is taken in the E-¢ model as the maximum of shear

production versus shear and buoyancy production, ie., max

{shear, shear + buoyancy) [Duynkerke and Driedonks, 1987).
The second term on the r.h.s. represents destruction of ¢, and
the third term represents the turbulent transport. The constant
C, is somewhat like an inverse Prandtl number and links eddy
viscosity for dissipation to that of momentum, ie, K, = C;K,.

Several researchers have used the E-e model to describe a
variety of atmospheric conditions. There is general agreement
on the simplified equation (25) used in the E-¢ model but some
differences in the constants (as discussed by Rodi [1980]). This
could be expected because it is through these constants that
each modeler strives to “fine tune” his results to those of
experimental observations or other model results. Most E-¢
models have been used with a standard set of constants
derived from engineering applications (see, for example, Laun-
der and Spalding [1974]):

C, =144 C,=192 C, =077 (26)
Duynkerke and Driedonks [1987], Beljaars et al. [1987], and
Stubley and Rooney [1986] all used the above constants in E-¢
models for boundary layer flow over various terrains and
under a variety of stability conditions. The only exception was
Beljaars et al. [1987], who modified C; to 0.54. Marchuk et al.
[1977] modified the standard E-¢ model slightiy for the simu-
lation of the oceanic mixed layer and used constants C, =
1.38, C, = 1.40, and C, = 1.0. Table 4 gives a summary of the
various constants used in the E-¢ models.

A different approach to the determination of constants in
the E-e model was made by Detering and Etling [1985]). They
considered the E-¢ model and its application to neutrally stra-
tified flows in idealized nonrotating boundary layers as op-
posed to atmospheric boundary layers. Their aim was to de-
velop an E-¢ model suitable for atmospheric applications
which compared well with atmospheric data. They reasoned
that the constants derived from engineering applications for
flows in nonrotating boundary layers (cquation (26)) were not
representative of atmospheric flow in which processes
throughout the depth of the boundary layer have an effect on
turbulent structure. They applied the standard E-¢ model to
the atmospheric boundary layer for comparison with observa-
tions and a simple mixing length model. Their conclusion
from thin shear laboratory flows was that the model with the
standard set of constants (26) produced much larger values of
u, and K compared to observations. Lee and Kao [1979] in a
finite element model of the neutral PBL and Mason and Sykes
[1980] in a 2-D model simulating vortex roll development
also presented similar discrepancies between modeled values
of u, and K and observations. Detering and Etling [1985]
explained that the difference in values could be the result of
the differences in the underlying assumptions and principles
upon which the constants in the closure scheme are deter-
mined. So instead of the values given in (26), Detering and
Etling [1985] proposed values for the constants, specifically
C,, which adjust the E-z model to better simulate the observed
structure of the atmospheric boundary layer. Constants C,

" and C,, equal to 1.90 and 0.77, respectively, are roughly those

determined from engineering flows. However, Detering and|
Etling [1985] provide a correction for C,. It is based on the
assumption that C, should depend on characteristic length
scales of turbulent flow considered. The modification for C, is
then

Cy' = Cyl/h @7
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where [ is given by (18) and h is the depth of the boundary

layer. This modification is not based on stringent arguments

but is proposed simply because it models the observed struc-
ture of the boundary layer.

22.3. The E-l model. A scheme similar to that for the E-¢
model is a scheme in which a prognostic equation for the
product E-/ is used in conjunction with the prognostic equa-
tion for turbulent kinetic energy (7). Termed the E-I (or g*-)
model, it was proposed by Mellor and Yamada [1974] as a
“model of compromise” between their level 2 and 3 models
(hence level 2.5 model). The advantage of the E-I model is that
it retains most of the features of a full second-order closure
model without the associated complexity. All second-moment
equations besides the two prognostic ones are reduced to alge-
braic equations. It is similar to an E-¢ model in that a prog-
nostic equation for ! (or ¢) is used, but it involves much more
of the structure of a second-order model. In this section we
consider together the models termed E-I (g%-I) and level 2.5.
E-l models are actually level 2.5 models in which a simplified
expression for K has been used [see Yamada, 1983]. However,
the same prognostic equations are used in both models, and
hence they are considered together.

Expressions for turbulent fluxes in the E-/ model are ob-
tained from simplifications of the level 2.5 model:

— (uw, vw) = S, K (8U/0z, 3V /d2) 8
— (W6, wg) = oS, K (00/0z, 30/0z)

The exchange coefficient K, is given by (11), and S, and
a (=K,/K,) are functions of the flux Richardson number Ri,
[Yamada, 1975, 1983] as below:

_ 1.96(0.1912 — RiX0.2341 — Ri)

- Ri, < 0.1
- (1= Ri,X02231 — Ri,) iy <016
(29)
S, = 0.085 Ri, 2 0.16
a = 1.318(0.2231 — Ri (02341 — Ri,)  Ri, <0.16 o
=112 Ri, 2 0.16

The prognostic equation for the length scale in the E-/
model as given by Yamada and Kao [1986] for horizontally
homogeneous flow is
AE-)) — U

—— =Cgll —uw — —ow—+

o
- c-,E:Iz[l + C'(l/ll)zl

where I, is a measure of the distance away from the wall
[Mellor and Yamada, 1982] and is modified to include stabili-
ty effects [Yamada and Kao, 1986]:

lg = kz — ph[Ri /(1 — Ri})] Ri <0
with constant u equal to 0.2. Constants Cq, C,, and C, in (31)
are empirically determined from neutrally stratified laboratory

experimental data that included channel, pipe, boundary layer,
and homogeneous shear flows [Mellor and Yamada, 1982]: .

Ce=18 C,=006 Cq=133

@31

(32)

The E-I model generally works well in simulating a wide
range of geophysical problems, as shown by Mellor and
Yamada [1982]. However, Yamada [1983] emphasized that
based on how the constants (33) are determined, the E-/ model

(33) .

might not be as ad hoc as it seems. He considered the compli-
cated closure assumptions originally developed for an E-/
equation [Rotta, 19517 along with the determination of con-
stants to be major shortcomings in the E-l model. Comparison
with turbulence data and other prognostic length scale equa-
tions will be helpful in determining the usefulness and ef-
ficiency of the E-I model.

3. CoMPARISON OF CLOSURE SCHEMES

In this study, 11 parameterization schemes, chosen as repre-
sentative of both first-order and TKE closure schemes (given
in Tables 1-4), are used for comparison in a one-dimensional
model. First-order closure schemes are divided into (1) K pro-
file (O 'Brien’s {1970] formulation) and (2) mixing length (Black-
adar [1962], Djolov [1973], and modified Djolov [1973])
schemes. TKE closure schemes are divided into (1) ! model
(Therry and Lacarrere [1983] formulation for / and 1,, Bodin
[1979], and Duynkerke and Driedonks [1987]) and (2) E-¢
model (constants given in Table 4). The E-! model is not con-
sidered for the sake of brevity. For each closure scheme, only
the formulation of the eddy viscosity coefficient K,, and as-
sociated constants are varied.

3.1. One-Dimensional Model

As a means of testing the first-order and TKE closure
schemes, numerical simulations of the boundary layer were
made using a one-dimensional time-dependent barotropic
PBL model originally developed at the Naval Research Lab-
oratory and modified at North Carolina State University to
include TKE parameterization schemes. The model consists of
prognostic equations given in (3) for U, V, ©, and Q. There
are 30 levels in the vertical (to a height of approximately 3 km)
with logarithmic resolution. The numerical scheme is a simple
centered-difference in space and forward in time. Fluxes, eddy
viscosities, mixing length, and vertical gradients are evaluated
at levels midway between the levels at which U, V, ©, and Q
are computed.

Surface layer profiles are assumed valid to the lowest com-
putational level (approximately 45 m) where surface layer
similarity is used. Above the surface layer, mixed layer theory
based on either first-order or TKE closure is used with eddy
coeflicient K, determined by the appropriate relationships
given in section 2. Eddy viscosity for heat X, is a function of
K, and z/L as given by Businger et al. [1971]. The depen-
dence on L is a shortcoming of the model because L is a
surface variable. For model calculations, PBL height h was
given as the lowest level at which local Richardson number
exceeded 1.

Lower boundary conditions for E and ¢ necessary for TKE
closure are given as [Mailhot and Benoit, 1982]

E=375,*
E =375+ 02w, + (;'z/L)z/au‘z
e=ufkz

z/[L>0
z/L<0

(34

(33)

where u, is friction velocity and w, is convective velocity
given as

u, = [(“—W)oz + (;’;)oz]”‘

w, = [(@/TIHWT)J"

(36)
@7
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Fig. 2. Profiles used for initialization of the one-dimensional model
obtained from MONEX79 radiosonde data.

where subscript zero denotes near-surface values, T, is virtual
temperature, g is gravitational acceleration, and virtual tem-
perature flux wT, is calculated as

wT, =wT + 061 Twg (38)

Upper boundary conditions require E = ¢ = 0.

32. Data

Data from the Monsoon Experiment were used in the one-
dimensional model simulations. Data were collected from air-
craft (mean and turbulence), ship, satellite, and towers in the
Bay of Bengal and Arabian Sea regions during MONEX79.
Because of limited aircraft data, only one observation day,
July 14, 1979, over the Bay of Bengal was chosen here for
mode! simulations. The 1-D model discussed in section 3.1
was initialized at 0000 UT using the mean profiles of U, V, ©,
and Q (Figure 2) obtained from a Soviet ship located in the
Bay of Bengal (18.0°N, 89.5°E) and was integrated for a 12-
hour period. Unfortunately, monsoon conditions in the Bay of
Bengal region during this time period were both non-
stationary and inhomogeneous. The monsoon trough had
begun to shift northward to the foothills of the Himalayas
signaling the beginning of break monsoon conditions. Associ-
ated with this shift was a recession of the boundary layer jet
and a substantial decrease in wind speed from a maximum of
18 m/s at a height of 1 km at 0600 UT July 13 to 8 m/s at
0000 UT July 14 [Holt and Raman, 1987].

To account for the highly variable conditions present oﬁ'

July 14, averaged ship and aircraft data were used to obtain
vertical profiles of mean variables U, V, ©, and Q used in
model verification. The 0600 UT soundings from the polygon
of stationary Soviet ships centered near 16.2°N, 89.4°E along
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with the 0400 UT low-level mean aircraft data (19.9°N,
88.9°E) from the NCAR Electra were averaged to obtain mean
profiles up to a height of about 1 km. Verification of flux
profiles is from Electra turbulence data only. The Electra re-
search flight of July 14 consisted of a vertical “stack™ used to
study the vertical structure of the monsoon boundary layer.

Sea surface temperature in the region of observations (ob-
tained from ship data) was taken to be a constant 29°C
(® = 301.7 K) for all model simulations. Geostrophic wind
obtained from pressure fields was approximately 16.8 m/s at
233°. The geostrophic wind is an important input parameter
in the 1-D model but one which is often difficult to determine
accurately. Thus sensitivity of the model to changes in the
magnitude of the geostrophic wind is also important and will
be considered following the discussion of results.

This monsoon data set was chosen for use in the numerical
simulations for two basic reasons: (1) both mean and turbu-
lence structure were readily available and (2) the lack of strong
baroclinicity in the boundary layer should make straightfor-
ward comparison of different PBL parameterizations to obser-
vational data easier to understand. However, the assumption
of barotropic conditions in the 1-D model is not entirely rep-
resentative of the conditions on July 14 as weak horizontal
temperature gradients could have existed. Thus, ideally, no
closure scheme used in this barotropic 1-D model can be ex-
pected to exactly predict the observed structure that would
depend on baroclinic effects such as a low-level jet. And as
mentioned, the nonstationary monsoon boundary layer also
poses problems in determining a representative vertical profile
of the region.

For more detailed information on the structure of the
boundary layer on this day or the MONEX79 data set, see
Holt and Raman [1986).

3.3. Model Results for Different
PBL Parameterizations

3.3.1. Mean profiles. There are a variety of ways to sys-
tematically and quantitatively measure the accuracy or skill of
a model, including root-mean-square (rms) errors, correlation
coeflicients, bias or threat scores, etc. However, differing con-
clusions can be drawn depending on the statistical method
chosen. As a means of quantifying the comparison of model
simulations to observational data, rms errors have been com-
puted from mean profiles for each of the 11 PBL parame-
terizations (Table 5). Calculations of deviations are made at
nine levels:

ms = [¥ (0, — P)*/(n — 1)]'? (39)
where O, is observations at level n and P, is predicted model
value at level n, where n = 0.1, 0.2, -- -, 0.9 km. The rms errors
provide an overview of the absolute accuracy of a data set.
However, they are poor indicators of how well a model pre-
dicts the overall structure of a variable [Anthes, 1986]. For
example, Figures 3 and 4 show .the east-west (U) and north-
south (V) wind components for MONEX79 observations and
model simulations. Model results are divided according to
parameterization schemes given earlier. The first-order
schemes of Blackadar [1962] and Djolov [1973] show no jet
structure in either the U or the V profiles but generally give
the smallest rms errors. This is simply because they approxi-
mate a mean fit to the data. The preferable first-order schemes
are the modified Djolov [1973] or O’Brien [1970] schemes in
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TABLE 5. Root-Mean-Square Errors
U, v, 0, 0.

m/s m/s K g/kg
First-Order Model
Blackadar [1962] 0.99 0.78 1.35 0.99
Djolov [1973] 090 0.80 1.42 1.05
Modified Djolov {1973) 0.66 1.39 0.33 1.45
O’Brien [1970] 0.55 1.51 0.34 1.64
| Model
Bodin [1979)] 0.94 1.22 0.28 2.25
Therry and Lacarrere [1983] 098 126 029 197
Duynkerke and Driedonks [1987] 0.72 1.38 0.24 1.53
E-e Model

Beljaars et al. [1987) 1.21 099 029 2.9
Duynkerke and Driedonks [1987] 1.24 1.05 0.29 2.9
Detering and Etling [1985] 1.15 1.03 0.29 2.74
Modified Detering and Etling 1.26 1.00 0.26 2.78

[1985]

which a jet structure is predicted (although largely overesti-
mated in the V profile).

Among TKE closure models (i.e., E-¢ and | models) there is
only slight variation from one parameterization to another.
For example, all E-¢ and | model parameterizations over-
predict the height of the jet in the U profile. Model results
indicate a weak jet of 6.0-6.5 m/s at roughly 600-700 m. Ob-
served jet height is approximately 400450 m. Model results
show a well-mixed profile from the surface up to approxi-
mately 500 m.

TKE closure schemes perform better in simulating the ob-
served V profile, in which the jet is much less pronounced
(Figure 4). Both E-¢ and | model results are similar, showing
little variation among schemes. Each parameterization over-
predicts ¥ by roughly 1.0-1.2 m/s up to the height of the jet
maximum. However, the observed V structure and the height
of the jet maximum are simulated well.

Figure 5 shows observations and model simulations of po-
tential temperature ©. E-¢ and [ model parameterizations pre-
dict well the potential temperature structure, although slightly
underpredicting mixed layer values by roughly 0.3-0.4 K. Ob-
servations from MONEX79 data indicate a PBL height h of
approximately 400 m [Holr and Raman, 1986]. However, the
vertical resolution of observed © near the inversion is not as
good as near the surface, and thus it is difficult to state defini-
tively that the models overpredict PBL height. All E-¢ param-
eterizations predict h equal to approximately 600 m. Parame-
terizations with the I model vary in estimating h. Therry and
Lacarrere’s [1983] parameterization involving mixing lengths
l and I, gives h equal to 500 m. Schemes of Bodin [1979] and
Duynkerke and Driedonks [1987] predict mixed layer depths of
550 and 590 m, respectively. Table 6 gives values of k for each
parameterization as well as other parameters derived from
surface variables.

In contrast to the TKE schemes, first-order closure schemes
do not model the observed © structure as well. This is a major
shortcoming of the first-order schemes. The Blackadar [1962]
and Djolov [1973] parameterizations show no temperature in-

version but rather a much warmer and more stable boundary -

layer. This is because their parameterizations do not consider
the effect of the inversion, such as the reduced turbulent
mixing above the boundary layer. The O’Brien [1970] and the
modified Djolov [1973] parameterizations indicate a cooler

m

and slightly unstable boundary layer. The modeled depth of
the boundary layer, as inferred from the potential temperature
structure, and the modeled height of maximum winds show a
relationship similar to observations. The low-level jet observed
during MONEX79 was typically situated at or slightly above
the top of the boundary layer. Profiles of resultant wind speed
(U? + V?)V2 (not shown here) calculated with both first-order
and TKE closure show wind speed maxima located within the
transition region between the boundary layer top and the cap-
ping stable layer. Strong boundary layer mixing as evident in
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Fig. 3. 'Vertical profiles of mean east-west wind component U at
roughly 0400 UT on July 14, 1979. Solid curves indicate observations
obtained from averaged ship and aircraft data. Mode! simulations are
divided according 1o (a) first order closure: Djolov [1973] (D); Blacka-

- dar [1962] (B); O’Brien [1970] (O); modified Djolov [1973] (M-D), (b)

{ model: Bodin [1979] (B); Therry and Lacarrere [1983] (T +L);
Duynkerke and Driedonks [1987] (D+D)and (c) E-¢ model: Duynk-
erke and Driedonks [1987) (D+D); Detering and Etling [1985] (D
+ E);Beljaars et al. [1987] (B); modified Detering and Etling [1985)
(M-D+E).
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Fig. 4. Same as Figure 3 but for north-south wind component V.

the profile of the eddy viscosity coefficient K,, is important in
producing the jet structure and will be discussed later.

Model simulations and observations of specific humidity Q
are given in Figure 6. No parameterization does particularly
well in predicting the observed Q magnitudes, although TKE
models generally simulate the basic structure better in the
boundary layer. E-¢ and [ model parameterizations over-
predict Q by 2.0-2.5 g/kg throughout the depth of the bound-
ary layer. The O'Brien [1970] and modified Djolov [1973]
first-order parameterization schemes predict similar values.
The large predicted values are probably due to excessive evap-
oration in the surface layer. Reduction of surface moisture
variable g, by 5-10% gives magnitudes more comparable
with observations. The Blackadar [1962] and Djolov [1973]
schemes perform only slightly better near the surface but do
not predict the well-mixed profile of Q observed. ‘

The effect of boundary layer mixing on mean profiles can be

seen in the profile of eddy viscosity coefficient K, (Figure 7).
Observed values are calculated from (1) and show the well-
observed boundary layer maximum at a height between h/3 to
h/2. However, model predictions based on TKE closure, while
approximating the basic parabolic structure of K,,, generally
do not predict the observed magnitude or height of this maxi-
mum. Given the simulated wind profiles, however, K, is as
good as could be expected.

Thus E-¢ model parameterizations as well as Duynkerke and
Driedonks [1987] | model parameterization generate large
boundary layer mixing. This is evident in the observed mean
profiles, particularly wind profiles in which the jet is situated
just above the height of maximum K. First-order closure
schemes do not predict K,, as well. The Blackadar [1962] and
Djolov [1973] parameterizations show large mixing through-
out the depth of the model, as evidenced in the large values of
K,, above the boundary layer. The modified Djolov [1973]
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TABLE 6. Observed and Modeled Boundary Layer Parameters

h. m L. m W, M/S Uy, MJ/S 8., K

Observed values 400 —255 0.57 0.36 0.025
First-Order Model
Blackadar {1962)] e -570 e 0.247 o
O'Brien [1970] 420 -110 0.628 0.295 0.0289
Djolov [1973] - -1050 0.240
Modified Djolov [1973] 480 -95 0.724 0.309 0.0336
| Model
Therry and Lacarrere [1983) 500 - 106 0.751 0.329 0.0348
Bodin [1979] 590 —108 0.784 0.326 0.0321
Duvnkerke and Driedonks [1987) 550 -93 0.749 0.304 0.0314
E-e Model

Duynkerke and Driedonks [1987] 600 -~119 0.809 0.346 0.0336
Beljaars et al. [1987] 600 ~111 0.808 0.338 0.0335
Detering and Etling [1985) 600 -112 0.808 0.339 0.0335
Modified Detering and Etling [1985) 600 -119 0.821 0.351 0.0345

scheme is an improvement in that K, approaches zero at the
top of the boundary layer.

From the comparison of parameterizations for mean values,
two main conclusions can be drawn. First, among first-order
closure schemes, mixing length parameterizations such as
those of Blackadar [1962] or Djolov [1973], which do not
account for effects of the capping boundary layer inversion, do
not perform well as compared to schemes which include the
effects of reduced mixing above the boundary layer. These
mixing length schemes show little agreement with observed
mean boundary layer structure. The second conclusion is that
among the remaining parameterizations, both first-order and
TKE closure, mean variables are relatively insensitive to the
closure scheme. Judging from rms errors and the overall pre-
dicted mean boundary layer structure, the first-order schemes
of O’Brien [1970] or modified Djolov {1973] or the I model or
E-¢ model schemes perform equally well. First-order schemes
show smaller rms errors and a closer approximation to the
structure in the U and Q profiles, but TKE closure schemes
perform better for V and ©. Other studies [Duynkerke and
Driedonks, 1987; Beljaars et al., 1987; Hunt and Simpson,
1982] have also shown the insensitivity of mean variables to
the type of closure scheme.

3.3.2. Turbulence profiles. In contrast to mean profiles,
turbulence profiles show significant differences among all clo-
sure schemes. Figure 8 gives model simulations and
MONEX79 observations of the vertical variation of momen-
tum flux for various parameterizations. In general, the E-c

model performs best, particularly the modified Detering and -

Etling [1985] parameterization in which constant C, is modi-
fied to vary with height. All E-¢ parameterizations do well in
predicting near-surface values and the general structure of mo-
mentum flux but underestimate throughout the boundary
layer. Parameterizations using the ! model do not predict
near-surface values as well as the E-¢ model (as seen from u,
values in Table 6). Observed values of momentum flux above
. the top of the boundary layer (about 400 m) show an increase
which is not modeled by any parameterization. This increase

is probably due to penetrative convection. Both first-order.

and TKE closure schemes predict momentum flux decreasing
to zero at the top of the boundary layer, with the exception of
the Blackadar [1962] and Djolov [1973] mixing length param-
eterizations which have unrealistic K,, profiles above h.

Observations and model simulations of sensible heat flux
w8 are given in Figure 9. Observed heat flux decreases with
height from a near-surface value of approximately 0.008 m s~ ?
K, becoming negative in the upper part of the boundary layer.
First-order closure has difficulty in simulating the observed
heat flux structure, particularly the parameterizations of Black-
adar [1962] and Djolov [1973]). These mixing length parame-
terizations erroneously predict negative heat flux throughout
the boundary layer evident from © profiles (Figure 5). Of the
TKE schemes, the E-¢ model performs best in modeling the
positive heat flux in the lower half of the boundary layer and
the negative flux aloft. The modified Detering and Etling
[1985] parameterization most closely models the observed
structure in the lower boundary layer but surprisingly does
worst in predicting the negative heat flux maximum. The
Duynkerke and Driedonks [1987] E-¢ parameterization models
the negative heat flux well, overestimating by approximately
30% at the top of the boundary layer. The / model generally
does well in predicting positive heat flux from the surface up
to mid-boundary layer depth but as in first-order closure has
difficulty modeling the negative flux. Bodin’s [1979] parame-
terization, in which [ is diagnostically determined as a function
of z/h, has particular difficulty near z = h. It greatly overesti-
mates heat flux necar the inversion. Therry and Lacarrere’s
[1983] parameterization is comparable to E-¢ parame-
terizations near z = h.

Convective temperature 6, and Monin-Obukhov length L
given in Table 6 were calculated as

0, = WT)o/w,

L = —Tu,>/kg(wT,),

(40)
@n

where u, and w, were calculated from (36) and (37). Model
simulations of friction velocity u, using TKE closure agree
well with MONEX79 observations. First-order closure gener-
ally underpredicts u,, as mentioned earlier. However, first-
order closure does better in predicting convective velocity w,

"and convective temperature 8,. This is believed to be due

primarily to the inclusion of moisture flux wq. Figure 10
shows model results and observations of the moisture flux
profile. No parameterization does particularly well in predict-
ing the observed magnitude of moisture flux, but near the
surface, first-order closure gives the best prediction. E-¢ and !
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Fig. 6. Same as Figure 3 but for specific humidity.

model parameterizations perform better near the inversion
base but generally overpredict in the lower half of the bound-
ary layer. Thus larger (wg), values from TKE parame-
terizations, as well as deeper boundary layer depth &, result in
overprediction of w,. If one simply considers heat flux with no
moisture, TKE parameterizations provide much closer ap-
proximations of w,, 0,, and Monin-Obukhov length L than
first order. This is seen in the heat flux profiles of Figure 9.

Figure 11 shows model simulations and observations of tur-
bulent energy E for E-¢ and ! model parameterizations. The
vertical structure is typical of convective boundary layers
[Deardorff, 1974]. All parameterizations underpredict near the
surface up to approximately 200 m but generally do well
above 200 m. The Duynkerke and Driedonks [1987] parame-
terizations for both E-¢ and ! models show the greatest devi-
ation from other modeis and from observations.

3.3.3. Turbulent kinetic energy budget. Figures 12 and 13
give observations and model simulations of the vertical profile

of the budget of turbulent kinetic energy as given by (7). The |
model simulations are presented in Figure 12, and E-¢ results
are given in Figure 13. Solid lines represent MONEX?79 obser-
vations of buoyancy production (B), shear production (S), dis-
sipation (D), and turbulent transport (T). Similarly, dashed
lines represent model simulations. Comparison of the three |
model parameterizations given in Figure 12 shows interesting
differences. In the lowest 300 m of the boundary layer, all
parameterizations indicate shear and dissipation as the domi-
nant source and sink terms, respectively. However, each pa-
rameterization greatly overestimates these terms, showing an
approximate balance between the two. In contrast, the ob-
served TKE budget shows turbulent transport and dissipation
as equally dominant sink terms in the lowest 300 m, balanced
by shear and buoyancy near the surface but primarly by shear
in the middle of the boundary layer. Buoyancy production is
simulated well near the surface, as shown in the discussion of
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Fig. 7. Same as Figure 3 but for eddy viscosity K,
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heat flux earlier, but negative fluxes near the inversion are
largely overestimated, particularly by Bodin [1979]. All three [
model parameterizations predict transport of TKE from the
lower to the upper half of the boundary layer as shown by
observations but underestimate the strength of this transport.
The height at which turbulent transport changes from upward
to downward is modeled well by Bodin [1979] and Duynkerke
and Driedonks [1987] but is underestimated by Therry and
Lacarrere [1983]. Therry and Lacarrere proposed a cofrection
term for the parameterization of wE to account for the
upward transport in the lower part of the convective bound-

ary layer:
WE = —C,K,(GE/é2) + Cpw (I/E'*)g/OWB)

where C, and C. are constants. They showed that this im-
proved parameterization, which included an additional buoy-
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Fig. 8. Same as Figure 3 but for momentum flux. Observational
data are from NCAR Electra aircraft data only.
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Fig. 9. Same as Figure 8 but for heat flux.

ancy production term in comparison to (9), modeled the flux
of TKE better and effectively raised the height at which turbu-
lent transport changed sign. This modification was incorpor-
ated into Therry and Lacarrere’s [1983] original parame-
terization. Results indicate better agreement with observations
for the height at which turbulent transport changes from posi-
tive to negative but show only small changes in the magnitude
of source and sink terms in the TKE budget. Closer examina-
tion of the observed wf profile indicates that buoyancy flux
becomes negative at such a low altitude that it does not
strongly influence wE for this monsoon boundary layer.

The vertical profiles of dissipation predicted by the ! model
parameterizations (Figure 12) are indications of the sensitivity
to mixing length determination. Therry and Lacarrere’s [1983)
parameterization involving a dissipation mixing length I, over-
predicts dissipation throughout the boundary layer. Bodin’s
[1979] parameterization is similar to that of Therry and La-
carrere but does better in predicting the vertical structure of ¢
except near the inversion. Of all parameterizations, Duynkerke

" and Driedonks’ [1987] simulation of dissipation shows the '

largest values near the surface. Interestingly, ¢ decreases to
zero near 400 m, much lower than observed or predicted by
other / model parameterizations. Examination of the vertical
structure of mixing length (or K, given in Figure 7) reveals the
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Fig. 10. Same as Figure 8 but for moisture flux.

possible reason. Anomalously large values of K,, and hence [
at approximately 400 m in Duynkerke and Driedonks’ [1987]
parameterization cause ¢ to approach zero. The large mixing
length is directly affected by the determination of 4 in (12),
which Duynkerke and Driedonks assumed to be approxi-
mately equal to /8 (about 70 m) for the bulk of the boundary
layer. Thus proper determination of mixing length is the
major problem in / model parameterizations. One length scale
is obviously not suitable either for momentum and dissipation
or for an unstable versus stable boundary layer. The inclusion
of a prognostic equation for dissipation to replace mixing
length appears to be an improvement.

Figure 13 shows the TKE budget for the E-¢ model. In
comparison to the ! model parameterizations shown in Figure
12, profiles predicted by the E-¢ model generally show less
variation among individual parameterizations. They also show
better agreement with observations. This is particularly true

for shear and dissipation. All E-¢ parameterizations predict
the general structure of ¢ much better than the ! model. The
modified Detering and Etling [1985) parameterization per-
forms best overall, showing the smallest overprediction in
both shear production and dissipation. Each E-¢ model pa-
rameterization underpredicts turbulent transport but does
show the general vertical structure, with the exception of
Duynkerke and Driedonks’ [1987] scheme. Their parame-
terization yields turbulent transport as a source term through-
out the boundary layer to compensate for the smaller shear
production than that given by other E-¢ parameterizations.

4. MoDbEL SENSITIVITY TO INITIAL CONDITIONS

Some mention should be made of the uncertainty or sensi-
tivity of the modeled mean and turbulence profiles. Using the
modified Detering and Etling [1985] E-¢ parameterization, ad-
ditional simulations were done with the initial geostrophic
wind (G) increased and decreased by 25%. Thus simulations
were carried out for 0.75G, G, and 1.25G. In the 1-D case
considered here, the geostrophic wind was the most difficult
input parameter to determine. Limited data in the region also
made it difficult to accurately predict horizontal and vertical
temperature distribution. The +25% changes were chosen as
the maximum and minimum deviations expected in the mag-
nitude of G.

Compared to original model simulations (geostrophic wind
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of 1.0 G), model results at 0400 UT for +25% changes in G
indicated that wind components U and V, turbulent kinetic
energy E, and momentum flux showed the largest deviations.
Near the surface (up to about 100 m), +25% changes in G
resulted in +20-22% changes in the magnitude of U and V
and +28% changes in E. Momentum flux changed by ap-
proximately +32%. Near the height of the wind speed maxi-
mum (about 600-700 m), changes in U had reduced to +14%,
and changes in E had reduced to +21%, while changes in ¥
and momentum flux had remained approximately constant at
+23% and +29%, respectively. Temperature and moisture
variables indicated much smaller variations in both mean
(about +0.1-0.2%) and turbulence (4 7-11%) throughout the

boundary layer. Thermodynamic variables are less directly af-
fected by G as evidenced from the PBL equations (3). Vari-
ation of mean and turbulent quantities of potential temper-
ature and moisture is dependent primarily on K. Variations in
K for +25% changes in G were approximately +9%
throughout the boundary layer.

The conclusion drawn from these simulations is that rea-
sonable model results are dependent on the accuracy of the
initial conditions, such as the geostrophic wind. For +25%
changes in G, differences in model simulations are larger than
differences between model versions in the ! model or E-¢
groups. This dependency of accuracy on initial conditions is
not a new result (see, for example, Anthes [1986]). We have
sought here only to quantify the uncertainty for this 1.D
model. However, the profiles of mean and turbulent parame-
ters showed similar structure, and performance of different
parameterization schemes was judged from their ability to
predict the known physical mean and turbulent structure of
the boundary layer.

We can hypothesize on possible sources of model error.
Initial profile data were available only from radiosondes
launched from ships (Figure 2). These profiles had a vertical
resolution of only 50 mbar (approximately 500 m). In contrast,
the vertical resolution of averaged ship and aircraft observa-
tions shown in Figures 3-6 was of the order of 100-150 m in
the boundary layer. Thus because of poor resolution in the
initial profiles, small-scale structures apparent in the observa-
tions may be difficult to simulate. This could explain the gen-
eral overprediction of boundary layer depth h from the poten-
tial temperaturc profiles. Factors not accounted for in the
model, such as inhomogeneity, baroclinicity, and intermittent
clouds present in the Bay of Bengal, would also cause errors
when verifying model profiles against observations.

5. CONCLUSIONS

Comparison of observations and 1-D model simulations of
mean and turbulence profiles in the monsoon boundary layer
using various parameterization schemes provides two general
conclusions. First, mean profiles such as potential temper-
ature, humidity, and horizontal wind components show little
sensitivity to the type of closure parameterization as long as
the effects of turbulent mixing in the boundary layer are prop-
erly handled. Thus, for mean profiles of U, V, ©, and Q,
determination of K, using a diagnostic formulation of ! or a
prognostic determination of ¢ makes little difference. However,
first-order schemes are sensitive to the atmospheric stability
and turbulent mixing in the boundary layer. A fundamental
weakness of K profile parameterizations is that they typically
must be specified as a function of stability. Thus profiles are
given on the basis of stable or unstable conditions, as seen in
the work by Yamamoto et al. [1973] or Orlanski et al. [1974].
Mixing length parameterizations were developed to avoid this
stability dependence by specifying a parameterization inde-
pendent of stability. This was attempted through the concept
of a mixing length best illustrated in Blackadar’s [1962] pa-
rameterization. The problem in formulations such as Blacka-
dar’s and Djolov’s [1973] lies in the failure of the mixing
length to properly include stability effects, particularly at the

-inversion and above the boundary layer. Thus to properly

model boundary layer structure, mixing length parame-
terizations must include some function of stability in the deter-
mination of K,,. This is evident upon comparison of results of
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the Djolov [1973] and modified Djolov [1973] schemes, which
differ only by a factor equal to (1 — Ri)*/2. Above the bound-
ary layer, K, is reduced to zero in the modified Djolov
scheme, as seen in observations, but approaches large positive
values for Djolov’s original parameterization. Mixing length
parameterizations which include stability, such as the modified
Djolov scheme or the ones given by Karisson [1972] or Es-
toque and Bhumralkar [1970] show better agreement with ob-
servations. Lack of such stability dependence tends to create
well-mixed profiles even above the boundary layer.

The second conclusion derived from comparison of model
simulations with observations is that TKE closure shows
closer agreement with the observed turbulence structure in the
boundary layer than first-order closure. Both the magnitude
and the vertical structure of momentum and heat fluxes ob-
tained from TKE closure agree better with observations.
Among TKE schemes, comparison of vertical flux structures
as well as budgets of TKE indicates that, as a group, E-¢
parameterizations perform better than I model schemes. Intu-
itively, this should be true because the E-¢ scheme contains
more physics of the boundary layer. Also, the E-¢ scheme
should be able to more accurately predict boundary layer
structure from a wider variety of atmospheric cases. This is
because it is based on a more physically realistic determi-
nation of energy dissipation as opposed to the mixing length
determination of the | model schemes. It would be of interest

to test PBL parameterizations for differing atmospheric stabil-

ities, not just the convective conditions considered here.
Among E-¢ parameterizations the modified Detering and
Etling [1985] scheme performs best overall. This parame-

terization differs from other E-e parameterizations only in the °

formulation of constant C, (dissipation production). The mod-
ified constant C,’ given by (27) is generally less than C, be-
cause / is less than h throughout the boundary layer. Thus

production of dissipation in (25) as calculated from the modi-
fied Detering and Etling scheme is less than that for the orig-
inal Detering and Etling [1985] parameterization or other E-¢
parameterizations given in Table 4. The TKE budget given in
Figure 13 reflects this conclusion. Dissipation calculated using
the modified Detering and Etling scheme is less than the
values for other schemes given and generally shows the closest
agreement with observations, but only in the lower part of the
boundary layer. The conclusion presented in section 3.3.2 that
the modified Detering and Etling scheme has the largest over-
prediction of negative heat flux near the inversion could also
be explained by the dissipation profile. Dissipation near the
top of the boundary layer as calculated by modified Detering
and Etling approaches zero and is much smaller than the
dissipation calculated by other E-¢ parameterizations. Thus a
larger negative buoyancy production near the top of the
boundary layer is required to balance the shear production
and the turbulent transport.

It is interesting to note that the modified Detering and
Etling [1985] parameterization was originally proposed be-
cause modeled values of K, and u, using the standard E-¢
model were larger than observations. Comparison here be-
tween E-¢ parameterization schemes shows an increase in K,
and u, for the modified Detering and Etling parameterization.
The larger K, values partly compensate for underprediction
of wind shear and generally provide closer agreement with
flux observations. .

This study has been an attempt to evaluate multilevel PBL
parameterizations in a simple 1-D barotropic model. Future
research will focus on implementing the improved TKE clo-
sure parameterization into a 3-D mesoscale model. Using the
Genesis of Atlantic Lows Experiment (GALE) data set, model
forecasts will be compared for different boundary layer phys-
ics.
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