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A simple nonlinear model for shelf air-sea interaction
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Abstract. A low-order, coupled atmosphere-ocean model is developed for studying air-
sea interactions over the continental shelf off the east U.S. coast. Maximum simplification
is used to derive the model equations, yet several key physical processes essential to the
continental shelf air-sea interaction are retained. Numerical solutions for the fully coupled
system, and analytical solutions for the steady state are analyzed.
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1. Introduction

Understanding the variability of sea surface temperature (SST) and ocean cur-
rents over the continental shelf off the east coast of the United States is important
for a number of reasons. Meteorologically, oceanic frontal features over the shelf
could enhance the local sea-to-air heat and moisture fluxes which often favor
the formation of coastal atmospheric fronts, mesoscale jets and cyclones (Hsu,
1984; Huang and Raman, 1992; Doyle and Warner, 1990). These coastal weather
systems are of great interest because of their importance to the development of
severe coastal storms which are some times disastrous to the coastal community.
From oceanographic point of view, shelf waters off the east coast is a buffer
or pathway between the Gulf Stream and the coastal estuaries. Oceanic frontal
features and currents greatly influence the cross-shelf exchange of water mass
and biota between the Gulf Stream and the estuaries (Pietrafesa et al., 1985; Lee
et al., 1989).

In principle, a coupled system linking a sophisticated regional-scale atmo-
spheric model and an advanced three-dimensional coastal ocean model is needed
to realistically simulate the coastal sea-air system. However, enormous comput-
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ing power and effort to collect data for model initialization and validation are
needed to execute such complex coupled models. Thus, simplified models are
often more attractive than complicated models as a research tool. Low-order
models are the simplest forms of simple models which can be easily solved
numerically on small work stations and some times even analytically track-
able.

A low-order model is generally formed by truncating the continuous forms of
model equations into a series of normal modes or discretizing the equations in
a network of grids. but retaining only the first a few modes or a small number
of grids. Low-order models are widely used in the study of nonlinear chaotic
systems. The often cited example of low-order model for geophysical fluid dy-
namics is the Lorenz system (Lorenz, 1963). It describes a single cell of Benard
convection, heated from below. Another acclaimed low-order model is that of
Charney and Devore (1979) for investigating the dynamics of persistent mid-
latitude atmospheric flow patterns. Low-order models have also been widely
used in air-sea interaction studies in the tropics. Vallis (1986) formed a low-
order model of El Nino and Southern Oscillation, a phenomenon associated with
anomalous warm SST occurring in the tropical Pacific every 2 to 5 years, by
simplifying the tropical Pacific as a two-point system. One point is located in
the western Pacific and the other is in the eastern Pacific. His two-point model
has captured many basic features reminiscent of the real system. A great deal
of advancement in our understanding of the El Nino and Southern Oscillation
phenomenon has been gained by studying the low-order behavior of the cou-
pled tropical atmosphere-ocean system. Vallis (1990) has provided an excellent
review on this subject.

In this study, we will construct a low-order model for a shelf sea-air system.
We will follow the formal procedure outlined in Vallis (1990) starting from
the conservation principles of momentum, mass and energy. We will retain key
physical processes deemed important for the shelf sea-air system while maximum
simplification will be applied to reduce the spatial dimensions.

2. Model equations

2.1 The ocean

We will first consider a low-order model consisting of six C-grid cells in a cross-
shelf section (x—z plane) for shelf waters off the east coast (Fig. 1). The shelf
is bounded from the west by a physical coastal barrier. Denote T_, T and T,
as surface layer temperatures in the inner (x = —dx), middle (x = 0) and outer
(x = 6x) shelves, respectively. Assume the interior layer temperature is also
T_,and T, > T > T_. This assumption implies a well-mixed inner shelf, a
stratified middle shelf and a more strongly stratified outer shelf. This is a typical
winter condition in the Carolinas’ shelves. Denote the surface cross-shore ocean
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currents at the inner shelf (x = —&x/2) and the outer shelf (v = dx/2) as
U_ and U,, respectively, and the vertical velocity at interface in the middle
shelf (x = 0, z = —&z) as W. The surface current in the middle shelf can be
interpolated linearly from U_ and U, as 0.5(U_ + U ).
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Fig. 1. Staggered C-grids used in the model.

Consider non-divergent flow in the x-z plane. The continuity equation is

du Jw
ax T 70

which can be discretized using centered difference scheme as:

u,-uv-. W

a0 @
Assume the temperature at the mid-shelf is determined by cross-shelf advec-
tion, upwelling and air-sea heat exchange which is crudely parameterized by
a Newtonian cooling effect with a time scale o~'. Let T* be the temperature
to which the mid-shelf SST would relax in the absence of motion. Then the
thermodynamic equation written in continuous form is

aT aT  oT .
E——Mg;—w—az—G'(T—T)
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which can be discretized using centered difference scheme in Arakawa C-grid
as

dT (T, —T_) (T—T_)
—_ = - W _ T _ *
a1 o 5- o =T
T, —T._ T —-T_
= vy T o) T 0
46x ox

The simplest assumption to make about the surface ocean current is that it is
forced by surface wind stress (7%.7V). In this case, the equations governing
the classical Ekman solution can be applied. Denote u, v as the ageostrophic
components of the surface current. Then the momentum equations written in
continuous form are

ot

07y
—aT:fv-Fé'——wl

ar,
%;:—fll+*£—Vv

where (7,.7,) are the shear stresses within the surface Ekman layer, and v~!
is a friction time scale for the shelf waters. Since the inner shelf is well mixed,
significant damping due to bottom friction occurs there. In the middle and outer
shelves, friction can be caused by vertical mixing as well as bottom friction
if stratification is weak. The value of » for the inner shelf may be larger than
that for the outer shelf. However, for simplicity, we will assume a constant v
for the entire shelf. The sensitivity of model results to the choice of » will be
discussed later. Denote H_ and H as the Ekman layer thicknesses in the inner
and the outer shelves, respectively and assume that they decrease as the vertical
temperature contrast (stratification) increases,

H_=D/[1+k(T,—-T_)] 3)

H, =D/[1 + k(T, ~T_)] )

where k is a constant representing the effect of vertical stratification on the
Ekman depth, and D is the unperturbed Ekman depth. In the special case of
k =0, Hy = H_, which represents a constant Ekman depth. Integrating the
momentum equations vertically through the Ekman layer and rewrite them in
finite difference form, we have

du x

—E=fV.+ %{1 +k(Ty —T_)] = U, (5)
dU _ Tt
—dt—-zfv_+‘5[1+k(T——T_)]—VU+ (6)
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dv

e fU+ KT =T = Vs (7)
dt D
dV_ o ’
U+ =4k =T =V 8
— SU-+ =11+ ke )] — )

Denote the along-shore wind components over the inner and outer shelves as
v, and v,.., respectively, and the corresponding cross-shelf wind components
as u,_, u,. Then a linear drag relation leads to

T, = Iy 9
75 =ru, ‘ (10)
Ti = v+ (] ])
™ = rv,. (12)

where r is a linear drag coefficient. From (5)~ (12), we may rewrite {/, and
U_ in terms of vertical temperature gradients and along-shore surface winds:

df1],+ = fV. + ”g’“[1+k(r+—T_)]—vU+ (13)
dd% —fV_+ ”g_[l + k(T ~T_)) — U, (14)
% = —fU, + er“+[1 +k(Ty =T )] — vV, (15)
LA R IR (16)

2.2 The atmosphere

We will assume the atmospheric surface perturbation winds over the shelf wa-
ters (u,, v,) are forced by the cross-shelf SST gradient. It is considered that
the cross-shelf SST gradient induces a cross-shelf pressure gradient in the at-
mosphere which then drives the surface flow field. Such a consideration has
often been adopted in studies of land-sea breeze type circulations in the coastal
region (Hauwritz, 1947; Hsu, 1984). Thus momentum equations for the surface

perturbation winds can be written as :

du:l+ ’ /
—E= fu +TTy —T) — i, (17)
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du’

L (L SRR (8).
(]U/ ’ ’
—.—(—1([1i = —f“u+ - 'LLU"+ (]9)
dav / ’
= = fu, - 20

where [T is a constant representing the effect of cross-shelf SST gradient on
the surface pressure gradie it force and u is a Rayleigh friction coefficient for
surface wind. Based on th¢ estimate of Hsu (1988) for mesoscale circulations
over the Gulf Stream at a lititude of roughly 37°N, the typical values for [T and
ware [1=6.4-10"ms2deg™'. and u = 3.2- 1077 s~'. The total cross-shelf
and along-shore wind components are

Uy = M:H_ + Uam (21)
U,— = u:,_ + uam (22)
Vg = v;+ + Vam (23)
Ug— = 'U;_ + Uam (24)

where u,, and v,, represent, respectively, the cross-shelf and the along-shore
components of the ambient wind.

The nine ordinary differential equations (2), (13) - (20) and diagnostic equa-
tions (21)—(24) are a closed systzm for nine time-dependent variables T, U,
U_, Vi, V_, ugq, ug, vy, and v,_, if T, and T_ are treated as known
boundary values. In this case, 7_ and T, can be considered as the western
and eastern boundary conditions which may be assumed either as constants
or time-dependent parameters. For example, a time dependent T, may repre-
sent a varying Gulf Stream flowing along the eastern edge of the shelf. A more
involved (but straight forward) development is to introduce two additional prog-
nostic equations similar to (2) for T, and T_, respectively. Then, we will need
to specify cross-shelf currents at the coast (which can certainly be assumed as
zero), and at the shelf edge which may be assumed as the cross-shelf current
induced by Gulf Stream meanders. In this study, we will simply assume T, and
T_ as known constants.

Since (2) is nonlinear, the equations governing the coupled shelf air-sea system
form a nonlinear dynamical system which can not be solved analytically, in
general. In the following seciion, we will analyze the steady state solutions and
the transient solutions under different approximation assumptions.
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3. Results

3.1 Steady state solutions

Consider first the steady state solutions by setting the left hand side of the
governing equations (2) and (13)-(20) to zero.
The steady state thermodynamic equation is

T, —T_ T-T_
T iy, vy T=TD) o —my—0 25

Uy +U) 456x ox

Equation (25) states the balance among cross-shelf advection, upwelling, and
diabatic cooling. In the absence of Newtonian cooling effect (o = 0), the equi-
librium SST in the mid-shelf must be maintained by the onshore (offshore)
advection of warm (cold) water and the upwelling of cold (downwelling of
warm) water from below (above). If, in this case, there is no upwelling (e.g.,
no temperature stratification over the mid-shelf, or the cross-shelf current is
uniform), equilibrium SST can not exist. In fact, the mean current (U, + U_)
and the mean SST gradient (T, — T_) will constantly warm the mid-shelf SST
which will eventually violate the physical laws and become unrealistic. There-
fore, mid-shelf warming due to cross-shelf advection must be balanced either by
a Newtonian cooling (air-sea heat exchange) or upwelling of cold water from
below in order to reach an equilibrium solution.
The steady state momentum equations for the surface ocean currents are

Us = Blvas + (v/ Pua (1 + k(T4 = T)] (26)
U- = Blva— + (v/ Hua-][1 + K(T ~ T_)] 27
Vo= @/HUs = r(fD)  ugy [1 + k(T4 = T_)] (28)
Vo= @/HU- = r(fD) " ug [1 + k(T — T_)] (29)

where B = r/[fD(1 + v*/ f?)] which represents the intensity of oceanic current
response to atmospheric wind forcing. If k = v = 0, (26) - (29) represent the
classical Ekman solutions induced by surface wind stresses over a well-mixed
water body of constant depth D.

The steady state equations for the surface perturbation winds are

’

Upgy = _ﬂ'vla-i-/f

w, =—pv,_/f

Vor = =TT+ ~T)/f + piy [ f
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Ve = —TUT = T_)/f + put,_/ f.
They can be rearranged as

w,, = pa(T, =T)/f (30)
w,_ = pa(T =T_)/f 31
v, =—a(T, =T) (32)
v,_=—a(T —=T_). (33)
Here,
a=TI[f(1+u/f]! (34)

which is a parameter representing the intensity of atmospheric response to
oceanic thermal forcing. Thus, (30) —(33) represent the steady state responses
of surface winds over a oceanic SST front. Hsu (1984) derived a similar re-
lationship between the mean velocity of a sea-breeze-like circulation across an
SST-front. For a sea-breeze circulation over a SST front at around 37 °N, Hsu
(1988) suggests that the average value for ua/ f is approximately 2ms~!deg™!.

Replacing the surface winds in (26)—(29) by cross-shelf SST gradient ex-
pressed by (30)-(33), the cross-shelf ocean currents over the outer and the

inner shelves can be rewritten, respectively, as

Uy =Bl + k(T — TOI-AT4 = T) + v*] (35)
U_ =B[14+ k(T -TH[-AT —T_)+v"] (36)

where
A=a(l —puv/f?) 37

V' = (Vam + V" tam).
The algebraic equations (25), (35) and (36) are a closed set for 7, U_, and U
We may substitute (35) and (36) into (25) to obtain a third order algebraic
equation for the perturbation SST over the mid-shelf (T’ =T — T_ ):

aT? + BT +yT' +¢=0 (38)
where

a = —BAk/6x
B=075a(Ty —T_) — B(2A — kv*)/éx

y = —B(T4 + T_){1.25kv* — A[l + k(T4 — T_)]}/6x — o
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c=—=0.25B(T . —T ){2v"+(T, =T _)[k[v* —A(T 4 —T_)]|~A)}/6x—a (T _—T").

The intensity of air-sea coupling is described by the values of A and B which
are determined by the thermal response coefficient T1. drag coefficient r, and
the friction coefficients u and ». Equations (34) and (37) indicate that the
coupling strength between the atmosphere and the oceans increases as the drag
coefficient » and the thermal forcing parameter IT increase and decreases as
the friction coefficients u and » increase. Thus, the net coupling strength is
determined by the relative intensity of forcing to that of damping. For a fixed
drag coefficient and friction coefficients, the intensity of coupling is determined
by IT or its equivalence A. So we can use A as an external parameter to examine
the sensitivity of the steady states to air-sea coupling strength.

The following set of parameters are used in the computations to be discussed
below: Ty = 20°C, T_ = 10°C, T* = 10°C, 6x = 30,000m, 6z = 20m,
F=729-107s"", w=2-100s", r=2-105s"!, » =579.10°% s,
o=1.16-10"%"" u,, =0.

The value of v,, and IT are respectively —5ms™! and 6.4 - 107> ms~'deg~",
except in the sensitivity computations where their values vary. For the transient
calculations, the initial value for 7 is 10°C and the initial perturbation current
and wind are zero everywhere.

i) Sensitivity to coupling strength.

We will first examine the sensitivity of steady state solutions of the coupled
system to the coupling strength. For simplicity, we will for the time being set
k = 0, so the Ekman layer depth is uniform over the entire shelf.

Figure 2a shows the steady state solutions for the mid-shelf SST as a function
of coupling coefficient A. In general, the value of A is positive since a higher
SST induces lower surface atmospheric pressure so the atmospheric pressure
gradient induced by an oceanic front must be in the opposite direction to the
SST gradient. So the surface perturbation winds blow from cold water toward
warm water. Fig: 2a indicates that there are two mathematical solutions for
the steady states. However, only the one warmer than the interior temperature
(10°C) is realistic. It varies from roughly 12°C for A = 0.125ms™'deg™! to
15°C for A = 1.425ms~'deg™'. Although the variance of the steady state SST
over the mid-shelf is only 3°C over almost an order of magnitude range of
A, we would state the dependence of mid-shelf SST on A as sensitive since
only a couple of degrees of difference could cause 3—4 ms~! of difference in
along-shore wind speed. The second steady state has a value less than interior
temperature 7_ and becomes unbounded as A approaches 0. Thus it is purely
computational, which has no counterpart in the real world.

The sensitivity of surface perturbation winds and currents to the coupling
strength exhibits the same characteristics as that of mid-shelf SST. This can be
expected from the fact that they are linear functions of mid-shelf SST as shown
in equations (26) —(34).
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(A} SENSITIVITY TO COUPLING STRENGTH
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realistic solution
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(C) SENSITIVITY OF EQUILIBRIUM SST TO K
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