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ABSTRACT _

Chi-square goodness-of-fit is used to test the hypothesis that the medium scale of turbulence in the
atmospheric surface layer is normally distributed. Coefficients of skewness and excess are computed from
the data. If the data are not normal, these coefficients are used in Edgeworth’s asymptotic expansion of
Gram-Charlier series to determine an alternate probability density function. The observed dats are then
compared with the modified probability densities and the new chi-square values computed.

Seventy percent of the data analyzed was either normal or approximately normal. The coefficient of
skewness g: has a good correlation with the chi-square values. Events with |g|<0.21 were normal to
begin with and those with 0.21< j#:1| <043 were approximately normal. Intermittency associated with
the formation and breaking of internal gravity waves in surface-based inversions over water is thought

to be the reason for the non-normality.

1. Introduction

The assumption of a Gaussian distribution for dis-

persion calculations in atmospheric studies is common.
The justification for the Gaussian assumption is the
belief that as the sample size increases, the distribution
approaches normality for a stationary, random process.
Kolmogorov (1962) and Oboukov (1962) postulated
that the Jogarithm of the energy dissipation rate e¢is a
normally distributed quantity. Stewart ef al. (1970}
and Gibson et al. (1970), among others, attempted to
verify this hypothesis in the atmospheric surface layer
by measuring the short-time average of a velocity
derivative and determining its probability densities.
Monin and Yaglom (1975) discuss the results of several
other investigators. In general, small-scale turbulence
expressed as velocity derivatives seems to conform to
+ the log-normal distribution, However, an analysis of
the basic parameters of atmospheric flow—longitudinal,
lateral and vertical wind fluctuations—for their prob-
ability distributions would be helpful in determining the
confidence limits of various statistical parameters of the
fiow. In addition, it would contribute toward a better
understanding of the atmospheric processes involved.
- An attempt is made in this paper to test the hypothe-
sis that the turbulence in the atmospheric - surface
layer is normally distributed. The chi-square goodness-
of-fit is used to achieve this purpose.
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2. Experimental data

Observational data for velocity fluctuations were
collected at the south shore of Long Island at heights
of 6 and 16 m above the surface (Raynor ef al., 1975).
A Vector Vane (manufactured by Meteorology Re-
search, Inc.) and a single-sensor, constant temperature
hot-wire anemometer (manufactured by Thermo Sys-
tems, Inc.) were used for the measurements. The masts
were close enough to the land-sea interface to be above
the internal boundary layer and exposed to the marine
air for onshore flows. The measurements were made in
various mean wind speeds ranging from 1 to 10 m s—L
Stable atmospheric conditions were present for most of
the cases (SethuRaman ef ol., 1974). The intensity of
turbulence o./%, where ¢, is the standard deviation of
the velocity fluctuations and % the mean wind speed,
varied from 0.018 to 0.14. Output from the Vector
Vane corresponding to speed, azimuth and elevation
angle and from the hot-wire for horizontal speed were
recorded using analog tape recorders. The signals were
digitized at 0.5 s intervals after passing through a low-
pass filter with the cutoff frequency set at 1 Hz. The
Vector Vane has been found to have a frequency re-
sponse of 1 Hz (SethuRaman and Brown, 1976) and
the hot-wire a frequency response of 5 Hz. In order to
avoid any effect of the filter, the data were pre-averaged
to 1 s means before the analysis. Fifty-two time periods
of turbulence data were analyzed. Each time peried
was about 17 min (1000 observations) in length and
was considered an event. Any trends in the data were
removed by fitting a least-square line before the X? test
was applied. The time period of 17 min was selected
since it is sufficiently long to have a large number of

455



456

observations, but small enough not to be appreciably
affected by diurnal trends.

3. Theoretical and statistical relations

The chi-square goodness-oi-fit test developed by Karl
Pearson (1900) is a widely used technique to judge
whether a set of N observations of a random variable
come from a given distribution. It was proven by
Pearson that

- (fi—F?
X _iZ—l—F,- (1)

has a chi-square distribution with —1 degrees of free-
dom for large N, where f; is the observed frequency in
the ith class interval, F; the expected frequency under
the given hypothesis in the ith class interval, and % the
number of class intervals into which the data are
grouped.

In fitting a theoretical curve to a distribution, it is
often necessary to calculate one or more parameters of
the curve from the sample data. If the estimates of
these parameters are the most efficient ones, the quan-
tity X* still has a chi-square distribution with 2—1—#
degrees of freedom where r is the number of parameters
estimated from the sample data.

The chi-square goodness-of-fit test can be applied in
two ways: 1) by selecting class intervals of equal ex-
pected frequencies which will result in variable interval
width and 2) by selecting class intervals of equal width
which will result in differing expected frequencies for
the class intervals. Adopting the equal frequency pro-
cedure, the data were grouped into 30 class intervals
as suggested by Williams (1950) for N=1000. Nearly
equal expected frequencies of occurrence were main-
tained in each interval except near the tails where ex-
pected frequencies were smaller. This procedure was
suggested by Cochran (1952). The choice of 30 class
intervals with near equal frequencies in each class was
made to optimize the power of the test.

There is still considerable argument about the value
of & to be selected for a given number of observations
(Dahilya and Gurland, 1973). However, the & selected
here is sufficiently large to make the test conservative.
The chi-square goodness-of-fit, using Eq. (1), was then
applied to the observations with the expected frequen-
cies computed from a normal distribution, The com-
puted X* value was compared with the value for a
chi-square distribution with 27 degrees of freedom at
the 5% level of significance. Two degrees of freedom
were lost in the estimation of mean and variance of the
data.

One of the objectives of this study was to determine
if the observations were at least “approximately”
normal, if not normal, at the same level of significance.
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The ith moment 3; of a random variable x is given by

1 ¥
Mi=— x;—E), 2

¥ E (x;~Z) (2)
where £ is the arithmetic mean of the random variable.
The higher order moments M; and M, are useful in
describing the statistical characteristics of a sample
as they depend on the shape of the frequency curve.
Using the commonly adopted procedure, M; and M,
are normalized as follows:

Coefficient of skewness: gi=M;/ M)} (3)

Coefficient of excess: =M /MH-3. @

M, is the variance of the sample. When gy and/or
g: differ significantly (by more than one standard
deviation) from their expected values for a normal
distribution, a Gram-Charlier series of orthogonal poly-
nomials can be used to improve the fit obtained by a
normal curve. Edgeworth’s asymptotic expansion of
the Gram-Charlier series (Cramer, 1946) is used in the
present analysis. The first approximation, fi(x), is
given by

fi) =8 (x) —%w (=), 3)

where $® (x) is the third derivative of the normal dis-
tribution function &(x). Since g is used in the new
calculation of expected frequencies, the number of de-
grees of freedom for chi-square goodness-of-fit will be
reduced by 1.

The second approximation, f»(x), is given by

& &2 10
fa(x)=®(x) —5@‘” (x)+;-!‘1>“’ (x)+agx"1'“” (), (6)

where ®@®(z) and &®(x) are the fourth and sixth
derivatives of the normal distribution function. An-
other degree of freedom is lost by the use of g,.

4. Results

a. Pretesting of data

One of the basic assumptions in the statistical analy-
sis of a time series is that it is stationary and the events
are random and independent. Stationarity in atmo-
spheric data is hard to realize due to diurnal trends. In
order to improve the stationarity within the period of
analysis, it is customary to remove the trend in the
data with the help of a least-squares fitted line. All the
52 events used in the analysis here were tested for
stationarity after removing the trend using the method
suggested by Bendat and Piersol (1966). Two typical
transient data plots are shown in Fig. 1 with the
straight line representing the least-squares fitted line.
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Results of the test for stationarity are given in Table 1
which indicate that most of the events analysed here
were within one standard deviation, ¢ from the ex-
pected mean.

The data were then tested for randomness without
réemoving the trend using the run test. The run test
considers the elements of a sample in the order in which
they are taken. The mean is calculated and then the
data classified as either above or below the mean. (The
median could be used in place of the mean.) A run is
defined as a sequence of values all above or below the
mean.

TaBLE 1. Test for stationarity after removal of trend.

Percent of events

that passed
Within 1 o 88
Within 2 » 94
Within 3 ¢ 100
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TaBLE 2, Test for ra.ndom.ne;ss with no trend removal showing
the percent of events that passed within various standard
deviations.

Averaging time (s)

Events 1 5 20 60
Within 1 & 0 4 ] 64
Within 2 ¢ 4] 4 36 &4
Within 3 # 0 16 68 96

Let

m,=the number of eléments above the mean,
#y=the number of elements below the mean,
ry=the number of runs.

For #,2 m,> 10, r, is approximately normal with the
mean and the variance given by (Kenney and Keeping,
1954)

E(r1) =14 2mmn,/ (m1+n,)
2m1n1(2mm1—m1—f§1)
[:(ml'}-ﬂl)’ (m1+n1"' 1)]

The analysis for randomness indicated that none of
the events were within 10 standard deviations of the
expected mean. But, as the results in Table 2 indicate,
the data became more random with increasing averaging
time with most of the sets of observations lying within
three standard deviations of the expected mean for 1
min averages. This leads to the conclusion that the
underlying stochastic process that is being sampled is
a discrete-time Markov process of finite order as defined
below. A process {xa} is a discrete-time Markov process
of order ¢ if the conditional probability

Prob{z,~=a,| tm=6m, m< p}

7
Var(r,)= @

(8)

is independent of the values of a. for m< p—¢. Billings-
ley (1961) discusses the justification for using a single
time function from a discrete-time Markov process of
finite order for chi-square tests.

b. Chi-square goodness-of-fit iest

The chi-square goodness-of-fit test was made on 52
independent events consisting of longitudinal, lateral

TaeLe 3. Chi-square goodness-of-fit test.

Events that passed
Number Percent
Total analyzed 52 100
Normal [Eq. (1)] 27 52
Normal or skewed normai [Eq. (5)] 30 58
Normal or normal after second
approximation [Eq. (6)] 3 65

Normal [Eq. (1)] or approximately
normal [Eqgs. (5) & (6] 37 71
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TasLE 4. Chi-square computation for Run 1.

F N fa
J [Eq. 1)] [Eq. ()] [Eq.(6)]

-,

1 6 6.2 53 5.1

2 28 339 330 329
3 36 335 333 334
4 36 32.1 36 31.7
5 26 30.0 294 29.5
6 25 354 35.2 35.3
-7 44 33.7 344 34.4
8 3s 37.2 ire 379
9 k3| 32.3 329 3238
10 42 343 348 3438
11 37 360 36.5 364
12 47 315 379 378
13 38 38.7 39.0 389
14 41 394 ’ 39.6 395
15 38 398 399 3o.7
16 47 398 39.7 3%.6
17 35 394 39.2 39.1
18 32 38.7 384 38.3
19 37 375 371 370
20 a3 360 35.5 355
21 28 M3 338 3.7
22 32 323 317 31.7
23 42 372 36.5 36.5
24 29 33.9 330 3341
25 30 354 35.6 5.7
26 25 30.0 30.6 30.7
27 40 321 32.6 328
28 35 335 ] 33.7 339
29 M 339 ‘ 34.8 T 347
30 8 6.2 7.1 70
a2 value 22.7 20.8 20.8

Mean wind speed = 745 m ™1, g, = 0.061. .
Standard deviation = 0.66 m §7, g, = — 0.0I7.

and vertical turbulence measured on 10 different days
during various meteorological conditions. Results of the
tests given in Table 3 indicate that about 52%, of the
events analyzed were normal. Three additional events

480
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320 |

2401

FREQUENCY OF OCCURRENCE

o

g3 p20 peo H peo pi2o uado

Fic. 2. Frequency histograms of observed {dotted line) and
normal (solid line) distributions for Run 1,

became approximately normal when the first approxi-
mation was used as in Eq. (3) with a term involving *
g1 and seven when the second approximation given by
Eq. (6) was applied with terms involving g, and g,

bringing the total to 70%,.

In all cases, by “were normal” and “became normal”
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it is meant to at least the 59 level of significance.

Typical calculations for a set of observations (Run 1
in Fig. 1) that passed the chi-square test with the
hypothesis that the distribution was normal is shown
" in Table 4. The first 17 min of 1 s averaged data were
used. There was very little trend for this time period.
Chi-square values with 27 degrees of freedom for 5%,
and 959, significance are 40.1 and 16.2, respectively.
When the data were normal, successive approximations
did not change the value of X* appreciably. Frequency
histograms of the observed frequencies and expected
frequencies if the data were normally distributed, are
shown in Fig. 2, The area under each interval would
correspond to the respective frequencies.

A typical case (Run 2) where the normal fit was
improved by successive approximations is given in
Table 5. This corresponds to the measurement of direc-
tional fluctuations measured in degrees presented in

TasLE 5. Chi-square o-omputa.tion for Run 2.

-,

F h fa
f [Eq. ()] [Eq.(5)] [Ea.(6)]

1 15 6.2

2 30 339

3 24 33.5

4 28 321

5 26 30.0

[ 36 354

7 46 33.7

8 28 372

¢ 23 323

10 30 343
11 a3 360
12 k] 375
13 40 387
14 42 394
15 47 39.8
16 36 398
17 39 394
18 38 38.7
19 44 3715
20 57 . 36.0
21 40 343
22 25 323
23 46 31.2
24 44 33.7
25 3 354
26 28 300
27 26 21
28 34 335
29 29 339
30 3 6.2
23 value 550

11.7
39.0
349
35.1
334
36.7
29.8
331
29.1
313
333
35.2
370
384
394
402
40.4
40.4
398
48.7
373
35.5
41.3
37.6
3.1
26.6
29.1
321
288

0.7
45.6

14.1
40.9
41.5
33.3
323
36.0
29.7
334
29.6
320
34.3
36.5
384
389
410
41.7
419
41.9
410
3907
8.1
36.1
41.6
37.5
33.5
25.5
272
28.6
30.6

32
35.7

Mean angle=190°, g;=—0.358.
Standard deviation =3.5°, ga=0.526.
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F1c. 3. As in Fig. 2 except for Run 2,

Fig. 1. Again, only the first 17 min of 1 s averages have
been used. There is an appreciable trend in the data
which was removed before the chi-square test. The
normal fit to the data improved with the X* value
changing from 55.0 to 35.7. The value at the 5%, level
of significance with 25 degrees of freedom is 37.7,
Frequency histograms of the observed frequencies and
expected frequencies for a normal distribution are
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F1G6. 4. Frequency histograms of observed (dotted Line) and

first approximation (solid line} to normal using coeficient of
skewness. Run 2.
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Fic. 5. As in Fig. 4 except for the second approxi.tﬁation (solid line)
to normal using coefficients of skewness and excess.

shown in Fig. 3. Figs. 4 and 5, respectively, compare
the observed frequencies with the modified expected
frequencies after first and second approximations.

¢. Coefficient of skewness

The coefficient of skewness g, for the sets of observa-
tions analyzed here varied from —1.1 to +1.2. Twenty-
one events had negative skewness which is 409, of the
total number. There seems to be a good correlation
between g, and the level of significance a where

a=Prob[x;>x;..], ®

X is the chisquare value with # degrees of
freedom and X3, are the tabulated chi-square values.
The ratio X2/ (X?) z where (X?)z, the expected value for a
normal distribution, is another indicator of the level of

28 ]
24 .
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2 6 "
ﬂxz’i 2| - o
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oal e
0

0 0l 0z O3 04 05 06 07 08 09 10 11 12 13
19

FiG. 6. Variation of x*/(x®)x vs |g1|. Asterisks indicate events
that were approximately normal. The dotted lines represent the
95 and 5% levels of significance. (Five events with the ratio
greater than 2.8 are not shown in this figure.)
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significance. The relationship between X*/(X?)g and the
absolute value of gy is shown in Fig. 6 where (X*)g is the
chi-square value at the 5% level of significance. A re-
gression analysis of the variables gave a relation of the
form

X2/ (X?) g=1.6 g1| +0.66 (10)

with a correlation coefficient of 0.7. The coeflicient of
skewness g; that would correspond to X*/(X*)g=1 is
0.21. Events became approximately normal and passed
the chi-square test for 0.21< |g;| <0.43 beyond which
they were appreciably skewed. The sample mean and
the variance of g, are given by (Cramer, 1946)

E(g)=0
Ma(g) =6(N—2)/[(N+1)(N+3)]}

with N=1000, M:(g:)=0.006 giving a standard devia-
tion equal to 0.077. It was found that 969, of the data
that had g, within three standard deviations of the
expected value, i.e., |g1] <0.23, passed the chi-square
test with the assumption that the distribution was
normal.

d. Cogfficient of excess

The coefficient of excess g; varied from —0.5 to 5.8.
Twenty-six events had negative excess which is 509
of the total number analyzed, The magnitude of the
positive coefficients of excess is larger than the negative
ones. The range of values was more symmetric for
coefficient of skewness. Although the correlation be-
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F16. 7. Frequency histogram of observed (dotted line) and
normal {solid line) distributions for typical longitudinal fluctua-
tion data with strong intermittency. This event had a g, of 0.07
and a gy of —0.7.

JOURNAL OF APPLIED METEOROLOGY

VOLUME 16

tween |g:| and X*/(X?) g was low, the data with —0.3
< g2<0.3 corresponding to two standard deviations
from the expected value of g, were either normal or
approximately normal. Most of the data that did not
pass the chi-square test had large positive g, values.

5. Discussion of results

The observations analyzed indicate that about 50%
of them are normal to begin with based on the chi-
square test at the 5% level of significance; 209,
more became approximately normal when the coeffi-
cients of skewness and excess were included in the
underlying distribution. In order to determine why the
other 309, of the observations were non-normal, a
careful analysis of the coefficient of skewness g, and the
coefficient of excess g: was made. It revealed that the
observations were non-normal for g;>0.43. For these
observations, values of g, were appreciably greater than
1. The positive value of g; indicates that the sample
distribution is less flat than the normal distribution.
The probability distribution of the sample will have a
higher central part and more elongated tails as com-
pared with a normal distribution of the same variance.
For a large excess, the values of the random vanable
tend to concentrate in separate regions, near the mean
and a few standard deviations away from the mean,
This is one of the signs of the phenomena of inter-
mittency in atmospheric turbulence—alternating periods
of small and large velocity fluctuations.

All the observations reported here are for onshore
flows with the atmospheric stability ranging from
slightly stable to strong surface-based inversions, These
conditions are conducive to the formation and breaking
of internal gravity waves of different harmonics causing
intermittency in turbulence. A recent case study
(SethuRaman, 1976) of these internal waves showed
them to be comprised of wavelengths ranging from
small to large scales (with corresponding periods vary-
ing from a few seconds to a few minutes). These, in
turn, cause intermittencies of differing degrees depend-

- ing on several meteorological parameters, viz., wind

speed, atmospheric stability, etc. Monin and Yaglom
(1975) also indicate that small-scale turbulence is inter-
mittent and with increasing Reynolds number, the
intermittency extends even to energy-containing eddies.

The frequency distribution for longitudinal velocity
fluctuations for a typical event with a strong surface-
based inversion and breaking internal gravity waves is
shown in Fig. 7. Values of the statistical parameters
associated with this event were g;=0.06, gs=—0.7, X
=413, X2 =173.6, where Xa,* is the observed chi-
square value.

Here, again, the observations tend to concentrate at
separate regions, close to the mean and away from the
mean.
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Thus the medium-scale turbulence in the atmo-
spheric surface layer seems to be normal or approxi-
mately normal except when the atmosphere becomes
strongly stable resulting in the formation and breaking
of internal waves leading to the phenomenon of inter-
mittency. A correlation of the normality or non-normal-
ity of the data with the occurrence of meteorological
variables conducive for the formation of gravity waves
will be attempted as a continuation of this work.
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