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presented in thfs paper.

The tase of three interconnected reser-
irs is met with sometimes in water supply
sys'tcms The usval problem in this case
tsctorfind the discharges in the three pipes
folrgiven clévations of the reservoirs, know-
Ingithe: lengthy: diameter: and the material
ibéﬂthe ‘p'pe ti.e. the equivalent sandgrain
| roughness of the pipe). A correct solution
gf@the probleq requires consideration of
: ‘tha fact that the Darcy-welsbach resistance
fﬁafeitwf‘a of “the" pipe varies with the
ynolds Vnumber and “(he relative rough-
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‘A dircct solution for the three-reservoir problem has S e
The condition that the upper

vy oger

been indicated by Streeter (1). However.
for the sake of simplicity a constang value
of ‘f* may be assumed for each pipe after
consideration of the material of the pipe
and the likely range of Reynolds aumber.
But the procedure still remains ope of trial
and error. The usual method is to assume
a suitable elevation for the hydraulic
gradient at the junction and then solve for
the discharges in the three pipes; the
correct elevation is the one which satisfies
the condition that the inflow into the junc-
tion equals the outflow.

In this paper a method is proposed by
which the three reservoir problemn ‘can be
solved directly without any ftrial. The
assumption made js that the resistance law
for each pipe can be expressed as
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" where hy is the head loss in the pipe (inclus
ding minor losses, if any) at & discharge Q
and r is a constant for the given pipe. It
can be soen_that r can be calculated for
any pipeline if the length, L, diameter, D,
are known andithie Daroyweisbach resistance
coeficient ‘" and the minor losses can be

" estimated.

Conditions governing flow directions in the
three pipes

Figure 1 shows a three-reservoir system
in which z, and z, are the eievations of the
water surfaces of the first and second
reservoirs above the water surface of the
lowermost reservoir. Let the elevation
of the hydraulic gradient at the junction
above the surface of the lowermost reser-
"voir be 25, It is obvious that flow tekes
. place from Reservoir 1 towards the junc.
tion and from the junction towards the
lowermps’t reservoir. But the direction of
flow in the second pipe is not so obvious.
In fact if the direction of flow in the second
pipe is known, the problem can be solved
directly without any trials. The direction
of flow in the second pipe can be deter-
mined as follows : Let us assume that z,
=2, Then obviously Qs the discharge
in the second pipe, is zero. Also

Q= /\/ et @
. . i

and Qe A/ B )

where Qy, and Q; are the dischanges in the
pipes 1 and 3 respectively and r, and r, are
their respective resistance parameters.
Obviously the assumed elevation for z
would be correct only if

,\/ W=z o A [T )
Iy s

In that case Qi and Q, can be computed

from Eq (2) and (3) and Q,=0.

If, however, /\/ 2y i T
I s

the value of z; will have to be increased
from its trial value of z, to satisfy the
continuity equation for the junction, This
means that flow takes place from. the
junction towards the reservoir in pipe 2.
The necessary conditon for this can be
simplified as shown below.

Zy—Zy =~ Zy
L8 I3

x—1 >R
X = leZ| and R] = I‘,/l‘,
K'—'l"‘"R] =0 (5)

where

forms the condition that flow takes place
from the junction to the reservoir in pipe 2.

Similarly it can be shown that
x~1—~R; <0 (6)

for flow to take place from the reservoir
to the junction in pipe 2. Thus the pro-
blems of three intercomnected reservoirs
can be classed under the following cate-
gories,

Casel: x—1—R,>0

The corresponding continuity equation
becomes Qi=0Q,+ Qs N
Casell: x—1—Ri=0
Then Q,=10

and Q=Qs= ,\/ 2T
h

CaseIll;: x—1 -~ R, <0

ﬂ’%
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* The cbﬂlhhii} "cquation for this case

BQ+Q=Qi 3)

m’l‘hm determmatxon of the wvalue of

' (x-_;,,l —-R,} enables classification of the
particular problem.. under the above heads
and the solution for case II is seen to be

4 extrcmcly simple., The solution for cases
I and III is discussed below, ‘

o

Cisel Flow : !’ron ‘Reservoir 1 to Reser-
volrs 2 and 3y (eodltlon x—1—R, > 0)

“The equations for -head loss angd the
contmmty equation for this can be express-
e ed as follows

Q:“"Ql“l‘Qa

@)
L2y = Qyt by Q2 ®)
~Zy = 1pQt -y Qpt (10)

\31_'_2.’_._ nQ'+ :Qi

| ,,r 3‘5% - Iy QI _“}‘f‘ QI

 FIG.1. DEFINITION SKETCH

Putting Q,/Q, = y and Qy/Qy = 1—y,
we get

1 R, + R
1-— Wﬁ?’ where R,=r,/r,.
Simplifying,

(Ry x+1—-x) y2 42y (x~—1)— —(x—R, —l)==0
Solving the above equation,

x—1 ¢
R,x-i-l x:t
’ X— R;
'\/(R.x-{-l x R,x-H an

The above equation yields two. values of 'y
and it needs to be examined as to which of
these corre- ponds to ¢the physical case under
consideration. In this particular case (x - 1)
and (x— R; — 1) are both positive but
(Rix+1-x) can be positive or negative
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depending on the value of R,.
{Ryx+ 1—X) is positive, the equation gives
one positive imd ome negative value of y,
the latter v.vaiuc1 bemg meanmg]ess . But
when {R,x—i-la.,.,nx) is negatwe the equation
gives two positive values of y. It can be
easily shown tkat one of these roots will be
Jess than 1.0, while the other will be greater
than 1.0, -Since in case I .the value of y can
only lie betwaen 0 and 1.0, the required
value of } Y is - that which is less than 1.0.

Thus forg_ both positive and negative values:

- of (R,x—}él-—x), there is only one possible

value ofiy.and. thus a unigue discharge

distribution in the three pipes.

Equation {11) can be written as

y=—Bt VB +n (12)
x—1
where B = R—,;Il———x (13)
_ X'—Rg—‘!
and A = m (14 .

'6; B’+y'+2B, = B:-{-A |
Ca AME yioy L)

- Bquation (15) was solved to obtain A for
'diﬁ'e;ent ‘valuesof y and B, "It should be
noticed, that in any particular problcm, A
and B will have the same sign (both posi-
tive ;or. both Pegative) .since (x—1} and
.{x — Ry — 1) are salways positive. This
“condition was ensured in choosmg the
-combination of values of v and B in solving
Bq 15. The ‘range of y chosen in these
icﬂgulatwnh is1from 0.05 to 0.9 and the
- range of the” barﬁmeter B was decided by
'coﬁmdcring theextteme values of %, R; and
R..- Aroin - ‘practical ~considerations.  The
results ofitheséchlculations are shown on
'Fig. 2, = Sinéelithe 'parameters A and B are

- kudwn - from* thé‘given data, the value of

yvcan-be read-‘from® Fig. 2. Using this

When

value of y, the discharges Qi, Qs and Q,

" can be obtained from Egs- (9) and‘(lO)
_ Case Il : Flow from Reservoirs 1 and 2 to

Reservoir 3 ; (Condition (x—1—R,) < 0)

The equations for head loss and the
continuity equation for this case are

Q+Q=0Q ®)
Z; =1, Qf+r; Q' « (16)
Zy == Tz Qy¥+-r; Q0 {17
From Eqs. (16) and (17)
R, + (1 + y)’
R.y' + (1+y)r
Simplifying, t.

(Ry x-+x—1) y'+2y (x—1)+(x-—R:—1)-0

Solving the _above equation

x-1
- R,x-l—x—l

& /\/( R,x1~x—l l

" <[t should bhe noticed that in this case,
(x—1) and (R; x-+x—1) are always positive
and (x—R,—1) is always negative. Thus
Eq. (18) will always yicld a positive and a
negative value of y, the latter value being
meaningless. This indicates again a unique
discharge distribution in the system,

. X—Ri—1 18
R’x+x'—l ( )

Eq. (18) can be written as )
y ==D+V ¢ (19)
o x-1 '
where D---~——~-—-—-—-—R'x_+_x_1 and
’ (x—Ri=1) °F
O TREE
s y+D'42yD=D*+C
or C=y(y4+2yD) . " (20)

Equation (20) was solved to obtain
values of C for various values ' of y and D.
The value of y was varied from 0.05 to
20.0 in these computations. Considering
practically extreme values of x, R, and R,,
range of the parameéter D was fixed. The



19

o, JO SON[EA SNOLIEA 10 (As pue .V, Usasm)ag UCHERY (e) 2 34

—Y

Vol. XI Nos. 3 & 4

- < T00
R % = Fepau 9 s ¥ S z 1 ¢ ¢« 5 & ¥ _f .
_ ﬁ P
| - ‘s s PP [
m s . + o a4 e |
A T 7 4 yd 1 -’ .
! i i A | A 1 A .
A + - \A -}
“ rd “ ? i Lol 2l VAR ! e L
- " > . T - 'Y
— .
T A T I L L
T > T . > T
7 \\ : % 114 Z
J\Iri r. i LA
i \\n 1] " !
'H
P14 - ; ] A
7t T p% it i
- 7 7 : I~ 2 T
SERI s %
ﬁ pd _ ﬁ Bl LA
ﬁ A 7
1 y v P <
_ 4
1 A =
* — .
1
p P I .
e "
g # g .
3
3
£
H
111 ﬂ
Vs




University of Roorkee Research Journal

20

o

g 40 SINTIVA SNOMWYA WO A ONY v; N3I3MI3E NOILY13Y 9 2N

-—V-

-

A i

M

E Y

LI TR

EE N U

bog



21

Vol. XI Nos. 3& 4

«Q, 40 SINTVA INIMIIS1Q HO4 A QgNv, D, NIIMLIG NOILVI3Y £ 914

e

-1

) —
agl® < ¥ s gV : £+ 881 £ £ & o &0 z t 4 s 90 z + e0f
L T 4 i BT v
M, M, 3 TN
" - h Y N ]
% N N
~ ~ A b B
-y
/......rII/I /// i
- N h!
b ~
N Y z
Ml
= A M €
. b - l
NI TN ] L)
- N |
—~ oy k-]
'
e
.
Fd
NN NN
e, Iy
N €
Mg [
o By 14
1 .
T | J
~ »
™
N
™




2

University of Roorkee Research Journal

results of these calculations are shown in
Fig. 3. The value of y can be read from
this figure for known values of C and D;
equations (16) and (17} can then be used to
obtain the values of Q,, Q; and Q.

Two typical problems are solved below

to illustrate the method of using Figs. 2

and 3.

Praob, 1

To find the discharges in the branching
system from the following data {Minor
losses neglected) :

Water surface in reservoir 1is 20m
above that in reservoir 3

Water surface in reservoir 2 is 10 m
above that in reservoir 3.

Pipe 1 is 100 cm. dia, 3000 m long with
f= .015

Pipe 2is 50 cm, dia, 600 m long with
f=,024

Pipe 3 is 60 cm. dia, 1200 m long with
f=.02
Solution :

From the above data,

ne= Shl_ 1x.015x3000
e X (D)X g mx [ X9.81
= 3.72

Similarly, r, = 38.2

ry = 25.5
X=2,[24=20/10=2; R =r,/r,=0.146 ; R, =
Iyffs=1.5; —1—=R;=2—1-0.146 > 0.

Hence this problem falls under case I.

x—R,-—I
Ryx +1—x

B— . *t
Rx+i—=x =05

Referring Fig. (2a) for the above values of

Now, A=

= 0.427

A and B, y == (,32
With this value of y in equations (10) and
),
Q, = 1.145 m3fsec.
Q. = 0.366 m?/sec and
Q; = 0.779 m3/sec

These values agree very closely with
those computed by the trial and error
method.

Prob. 2

To find the discharges in the branching
system with the following data for pipe
lines :

Water surface in reservoir 3 is 30 m
below that in reservoir ! and 20m below
that in reservoir 2.

Pipe line 1 from reservoir 1 —1000 m long
and 10 cm. dia.

Pipe line 2 from reservoir 2 —50 m long
and 10 cm dia.

Pipe line 3 from reservoir 3 —100 m long
and 10 cm. dia.

Friction factor, “f** for all the three pipes
= 0.02,
Solution

From the given data
r, = 1,65 X 108
T = 8.3 x 108
rs == 1.65 x 104

R;=10, Ry=0.5 and x—1-R;,=1,3—1

— 0.38 < 0; thus the problem falls under <.

case III
' x—1
Ful‘ther D = WE 0-4 and
e X~Ry—-1
C= Ry x+x—1 76

Referring Fig. (3) for the above values of

Cand D,
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. y =23 =Q,/Q,

S QufQn = 3.3,

Substitution in (8) and (16) yields

Q,=0.931 %10"* m*sec,

Q=2.14x 104 ,,

Q;=3.07x 10 |,
" The values ecomputed by the trial and
error method are very close to the above

Reference

values,
Conclusions

The solution to the three reservoir
problem has been put in the form of  set
of diagrams. These diagrams enable
direct solution of the problem avoiding
the tedious process of trial and error.

I. STREETER, V.L., “Fluid Mechanics,” McGraw Hill Book Co, Inc 1962.

Notations

hy = Head loss in pipe (including minor losses, if any).

Q = Discharge fowing through pipe.
r = Resistance parameter for the pipe.

R == Dimensionless relative resistance parameter,

L == Length of the pipe line.

f = Darcy-Weisbach coefficient.

*

z = Elevation of the water surfaces in the reservoirs above that in the lowest,
zy == Elevation of the hydraulic gradient at the junction above the water surface of the

lowermost reservoir.

1,2,3« Subscripts to refer the appropriate pipe line and the reservoir.

g = Acceleration due to gravity

A,B,C,Dw=Dimensionless parameters introduced in the analysis,

X =2z




